Swords W Edward, Jones Paul A, Apicella Michael A
Department of Microbiology and Immunology, Wake Forest University School of Medicine, Iowa City, IA 52242, USA.
J Endotoxin Res. 2003;9(3):131-44. doi: 10.1179/096805103125001531.
The composition of the lipo-oligosaccharide (LOS) of Haemophilus influenzae is highly variable, especially in the oligosaccharide region. Many of the biosynthetic and transferase genes involved in LOS biosynthesis vary in seemingly random fashion by means of polymerase stuttering within redundant sequences in the 5'-portion of the genes. This results in a heterogeneous population of individual bacteria expressing literally thousands of LOS glycoforms. The simultaneous variation in the expression and structural context of a large number of individual carbohydrate and lipid structures within the LOS yields a diverse array of LOS glycoforms. The expression of glycoforms that mimic host structures may allow the organism to evade innate defenses and to manipulate host cell biology. We review how this randomly generated bacterial combinatorial chemistry results in the production of a large number of carbohydrate structures, in essentially any conceivable structural context, some of which allow the organism to utilize host cell receptors. By generating a diverse population of bacteria expressing different LOS glycoforms, discrete H. influenzae subpopulations may be adapted for survival of different environmental stresses within the airways. Thus, H. influenzae utilizes a simple and efficient "Monte Carlo" strategy for achieving maximal variation in cell surface structures, which allow the organism to adapt efficiently to environmental stresses with a small genome.
流感嗜血杆菌脂寡糖(LOS)的组成高度可变,尤其是在寡糖区域。许多参与LOS生物合成的生物合成基因和转移酶基因,通过基因5'端冗余序列内的聚合酶滑动,以看似随机的方式发生变化。这导致单个细菌群体呈现异质性,实际上表达数千种LOS糖型。LOS中大量单个碳水化合物和脂质结构的表达和结构背景同时发生变化,产生了各种各样的LOS糖型。模拟宿主结构的糖型表达可能使该生物体逃避先天防御并操纵宿主细胞生物学。我们综述了这种随机产生的细菌组合化学如何导致在基本上任何可想象的结构背景下产生大量碳水化合物结构,其中一些结构使该生物体能够利用宿主细胞受体。通过产生表达不同LOS糖型的多样化细菌群体,离散的流感嗜血杆菌亚群可能适应气道内不同环境压力下的生存。因此,流感嗜血杆菌利用一种简单而有效的“蒙特卡罗”策略来实现细胞表面结构的最大变异,这使得该生物体能够以小基因组高效适应环境压力。