Suppr超能文献

一种基于遗传算法的乳腺癌诊断最近邻分类方法。

A genetic algorithm based nearest neighbor classification to breast cancer diagnosis.

作者信息

Jain R, Mazumdar J

机构信息

School of Information Technology, James Cook University, South Australia.

出版信息

Australas Phys Eng Sci Med. 2003 Mar;26(1):6-11. doi: 10.1007/BF03178690.

Abstract

This paper presents an application of a hybrid approach (the genetic algorithms and the k-nearest neighbour) proposed by Ishbuchi to Wisconsin breast cancer data. For the diagnosis of breast cancer, the determination of the presence of benign/malignant breast tumors represents a very complex problem (even for an experienced cytologist). Therefore the automatic classification of benign and malignant symptoms is highly desirable as a valuable aid to assist oncologists in the decision making of the diagnosis of breast cancer. In this paper, the genetic algorithm based k-nearest neighbour method for classification of benign and malignant breast tumors is presented. The genetic-algorithm (GA) is used for finding a compact reference set by selecting a small number of reference patterns from a large number of training patterns in nearest neighbor classification. The GA simultaneously performs feature selection and pattern selection and prunes unnecessary features. The goal is to maximize the classification performance of the reference set and minimize the number of selected patterns and features. Results are also compared with a fuzzy-genetic approach where each reference patten represents a fuzzy if-then rule with a circular-cone-type membership function.

摘要

本文介绍了石buchi提出的一种混合方法(遗传算法和k近邻算法)在威斯康星乳腺癌数据中的应用。对于乳腺癌的诊断,确定乳腺肿瘤是良性还是恶性是一个非常复杂的问题(即使对于经验丰富的细胞学家也是如此)。因此,良性和恶性症状的自动分类作为一种有价值的辅助手段,非常有助于肿瘤学家在乳腺癌诊断的决策过程中提供帮助。本文提出了基于遗传算法的k近邻方法来对乳腺肿瘤的良性和恶性进行分类。遗传算法(GA)用于在最近邻分类中从大量训练模式中选择少量参考模式,从而找到一个紧凑的参考集。GA同时进行特征选择和模式选择,并去除不必要的特征。目标是使参考集的分类性能最大化,并使所选模式和特征的数量最小化。结果还与一种模糊遗传方法进行了比较,在该方法中,每个参考模式代表一个具有圆锥型隶属函数 的模糊if-then规则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验