Ray Arghya, Kumar Gopinatha Suresh, Maiti Motilal
Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Calcutta 700 032, India.
J Biomol Struct Dyn. 2003 Aug;21(1):141-51. doi: 10.1080/07391102.2003.10506912.
Synthetic alternating GC-rich DNA polymers can adopt Hoogsteen base-paired structures (H(L)-form) under the influence of low pH and temperature. The interaction of aristololactam-beta-D-glucoside (ADG), a natural glucoside derivative of aristolochia group of alkaloids, with protonation-induced structures (H(L)-form) of poly(dG-dC).poly(dG-dC) and poly(dG-m(5)dC).poly(dG-m(5)dC) has been studied using different biophysical techniques. The binding of ADG to protonated DNA is characterized by typical hypochromism and bathochromism of the absorption spectrum of the alkaloid, quenching of steady state fluorescence intensity, decrease in quantum yield, increase in fluorescence polarization anisotropy values, increase in thermal transition temperature of polynucleotides following alkaloid binding and perturbation of circular dichroic spectrum of polynucleotides as a result of its interaction with the alkaloid. Scatchard analysis of the data indicates that ADG binds to protonated structures in a nonlinear noncooperative manner. The binding parameters determined from spectrophotometric titration data employing excluded site model indicate that protonated poly(dG-m(5)dC).poly(dG-m(5)dC) is more favorable for ADG binding than the corresponding nonmethylated analog. The binding of ADG to protonated structures renders a higher degree of stabilization against thermal denaturation compared to respective B-form-ADG interactions and induces a conformational switch to a bound altered form which is different from its interaction with B- and Z-form DNA structures. Thermodynamic parameters (Delta G degrees, Delta H degrees and Delta S degrees ) obtained by van't Hoff analysis of the data indicate that the binding of alkaloid to protonated structures is an exothermic process and the binding free energy arises primarily from a negative enthalpy change. Moreover, the binding leads to an increase in the contour length of protonated DNAs. These results suggest that ADG possibly binds to protonated DNAs by the mechanism of intercalation.
合成的富含交替GC的DNA聚合物在低pH和温度影响下可形成Hoogsteen碱基配对结构(H(L)型)。已使用不同的生物物理技术研究了马兜铃内酰胺-β-D-葡萄糖苷(ADG),一种马兜铃属生物碱的天然葡萄糖苷衍生物,与聚(dG-dC)·聚(dG-dC)和聚(dG-m(5)dC)·聚(dG-m(5)dC)的质子化诱导结构(H(L)型)之间的相互作用。ADG与质子化DNA的结合表现为生物碱吸收光谱典型的减色和红移、稳态荧光强度猝灭、量子产率降低、荧光偏振各向异性值增加、生物碱结合后多核苷酸热转变温度升高以及由于其与生物碱相互作用导致多核苷酸圆二色光谱扰动。对数据的Scatchard分析表明,ADG以非线性非协同方式与质子化结构结合。采用排除位点模型从分光光度滴定数据确定的结合参数表明,质子化的聚(dG-m(5)dC)·聚(dG-m(5)dC)比相应的非甲基化类似物更有利于ADG结合。与各自的B型-ADG相互作用相比,ADG与质子化结构的结合对热变性具有更高程度的稳定性,并诱导构象转变为结合改变形式,这与其与B型和Z型DNA结构的相互作用不同。通过对数据进行范特霍夫分析获得的热力学参数(ΔG°、ΔH°和ΔS°)表明,生物碱与质子化结构的结合是一个放热过程,结合自由能主要来自负的焓变。此外,结合导致质子化DNA的轮廓长度增加。这些结果表明,ADG可能通过嵌入机制与质子化DNA结合。