De Stefano Concetta, Milea Demetrio, Pettignano Alberto, Sammartano Silvio
Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Università di Messina, Salita Sperone 31, 98166 Messina (Vill. S. Agata), Italy.
Anal Bioanal Chem. 2003 Aug;376(7):1030-40. doi: 10.1007/s00216-003-2056-1. Epub 2003 Jul 11.
The acid-base properties of phytic acid [ myo-inositol 1,2,3,4,5,6-hexakis(dihydrogen phosphate)] (H(12)Phy; Phy(12-)=phytate anion) were studied in aqueous solution by potentiometric measurements ([H+]-glass electrode) in lithium and potassium chloride aqueous media at different ionic strengths (0< I mol L(-1)< or =3) and at t=25 degrees C. The protonation of phytate proved strongly dependent on both ionic medium and ionic strength. The protonation constants obtained in alkali metal chlorides are considerably lower than the corresponding ones obtained in a previous paper in tetraethylammonium iodide (Et(4)NI; e.g., at I=0.5 mol L(-1), log K(3)(H)=11.7, 8.0, 9.1, and 9.1 in Et(4)NI, LiCl, NaCl and KCl, respectively; the protonation constants in Et(4)NI and NaCl were already reported), owing to the strong interactions occurring between the phytate and alkaline cations present in the background salt. We explained this in terms of complex formation between phytate and alkali metal ions. Experimental evidence allows us to consider the formation of 13 mixed proton-metal-ligand complexes, M(j)H(i)Phy((12-i-j)-), (M+ =Li+, Na+, K+), with j< or =7 and i< or =6, in the range 2.5< or =pH< or =10 (some measurements, at low ionic strength, were extended to pH=11). In particular, all the species formed are negatively charged: i+j-12=-5, -6. Very high formation percentages of M+-phytate species are observed in all the pH ranges investigated. The stability of alkali metal complexes follows the trend Li+ > or =Na+K+. Some measurements were also performed at constant ionic strength (I=0.5 mol L(-1)), using different mixtures of Et(4)NI and alkali metal chlorides, in order to confirm the formation of hypothesized and calculated metal-proton-ligand complex species and to obtain conditional protonation constants in these multi-component ionic media.
通过在不同离子强度(0<I mol L⁻¹≤3)且温度t = 25℃的锂盐和钾盐氯化物水溶液介质中,采用电位滴定法([H⁺] - 玻璃电极)研究了植酸[肌醇1,2,3,4,5,6 - 六磷酸酯](H₁₂Phy;Phy¹²⁻ = 植酸根阴离子)在水溶液中的酸碱性质。结果表明,植酸的质子化强烈依赖于离子介质和离子强度。在碱金属氯化物中获得的质子化常数明显低于先前在碘化四乙铵(Et₄NI)中得到的相应常数(例如,在I = 0.5 mol L⁻¹时,在Et₄NI、LiCl、NaCl和KCl中log K₃(H)分别为11.7、8.0、9.1和9.1;Et₄NI和NaCl中的质子化常数已在之前报道),这是由于植酸与背景盐中存在的碱性阳离子之间发生了强烈相互作用。我们从植酸与碱金属离子形成配合物的角度对此进行了解释。实验证据使我们能够认为在2.5≤pH≤10范围内(在低离子强度下的一些测量扩展到了pH = 11)形成了13种混合质子 - 金属 - 配体配合物MⱼHᵢPhy⁽¹²⁻ⁱ⁻ⱼ⁾⁻(M⁺ = Li⁺、Na⁺、K⁺),其中j≤7且i≤6。特别地,形成的所有物种都带负电荷:i + j - 12 = -5、-6。在所有研究的pH范围内都观察到了M⁺ - 植酸物种的非常高的形成百分比。碱金属配合物的稳定性遵循Li⁺≥Na⁺>K⁺的趋势。为了确认假设和计算出的金属 - 质子 - 配体配合物物种的形成,并获得这些多组分离子介质中的条件质子化常数,还在恒定离子强度(I = 0.5 mol L⁻¹)下使用Et₄NI和碱金属氯化物的不同混合物进行了一些测量。