Kiefer F N, Neysari S, Humar R, Li W, Munk V C, Battegay E J
Medical Outpatient Department and Department of Research, University Hospital, CH-4031 Basel, Switzerland.
Curr Pharm Des. 2003;9(21):1733-44. doi: 10.2174/1381612033454540.
Arterial Hypertension (AH) is characterized by reduced nitric oxide (NO) biosynthesis, activation of the Renin-Angiotensin-Aldosteron-System (RAAS), vasoconstriction, and microvascular rarefaction. The latter contributes to target organ damage, especially in left ventricular hypertrophy, and may partially be due to impaired angiogenesis. Angiogenesis, the formation of new microvessels and microvascular networks from existing ones, is a highly regulated process that arises in response to hypoxia and other stimuli and that relieves tissue ischemia. In AH, angiogenesis seems impaired. However, blood pressure alone does not affect angiogenesis, and microvascular rarefaction is present in normotensive persons with a family history for AH. Normal or increased NO in several processes and diseases enables or enhances angiogenesis (e.g. in portal hypertension) and reduced NO biosynthesis (for example, in a rat model of AH, in other disease models in vivo, and in endothelial NO Synthase knock out mice) impairs angiogenesis. Angiogenic growth factors such as Vascular Endothelial Growth Factor (VEGF) and Fibroblast Growth Factor (FGF) induce NO and require NO to elicit an effect. Effector molecules and corresponding receptors of the RAAS either induce (Bradykinin, Angiotensin II) or perhaps inhibit angiogenesis. The pattern of Bradykinin- and Angiotensin II-receptor expression and the capacity to normalize NO biosynthesis may determine whether ACE-inhibitors, Angiotensin II-receptor antagonists and other substances affect angiogenesis. Reconstitution of a normally vascularized tissue by reversal of impaired angiogenesis with drugs such as ACE inhibitors and AT1 receptor antagonists may contribute to successful treatment of hypertension-associated target organ damage, e.g. left ventricular hypertrophy.
动脉高血压(AH)的特征是一氧化氮(NO)生物合成减少、肾素-血管紧张素-醛固酮系统(RAAS)激活、血管收缩和微血管稀疏。后者导致靶器官损伤,尤其是左心室肥厚,可能部分归因于血管生成受损。血管生成是指从现有血管形成新的微血管和微血管网络的过程,是一个高度受调控的过程,它在缺氧和其他刺激下产生,并缓解组织缺血。在AH中,血管生成似乎受损。然而,单纯血压升高并不影响血管生成,有AH家族史的血压正常者也存在微血管稀疏现象。在一些过程和疾病中,正常或增加的NO可促进或增强血管生成(如在门静脉高压中),而减少的NO生物合成(例如,在AH大鼠模型、其他体内疾病模型以及内皮型NO合酶基因敲除小鼠中)则会损害血管生成。血管内皮生长因子(VEGF)和成纤维细胞生长因子(FGF)等血管生成生长因子可诱导NO生成,且需要NO才能发挥作用。RAAS的效应分子和相应受体要么诱导(缓激肽、血管紧张素II)要么可能抑制血管生成。缓激肽和血管紧张素II受体的表达模式以及使NO生物合成正常化的能力可能决定血管紧张素转换酶抑制剂、血管紧张素II受体拮抗剂和其他物质是否会影响血管生成。用血管紧张素转换酶抑制剂和AT1受体拮抗剂等药物逆转受损的血管生成,从而重建正常血管化组织,可能有助于成功治疗与高血压相关的靶器官损伤,如左心室肥厚。