Suppr超能文献

基质金属蛋白酶9缺失时骨折修复的改变

Altered fracture repair in the absence of MMP9.

作者信息

Colnot Céline, Thompson Zachary, Miclau Theodore, Werb Zena, Helms Jill A

机构信息

Department of Orthopaedic Surgery, University of California-San Francisco, San Francisco, CA 94143-0514, USA.

出版信息

Development. 2003 Sep;130(17):4123-33. doi: 10.1242/dev.00559.

Abstract

The regeneration of adult skeletal tissues requires the timely recruitment of skeletal progenitor cells to an injury site, the differentiation of these cells into bone or cartilage, and the re-establishment of a vascular network to maintain cell viability. Disturbances in any of these cellular events can have a detrimental effect on the process of skeletal repair. Although fracture repair has been compared with fetal skeletal development, the extent to which the reparative process actually recapitulates the fetal program remains uncertain. Here, we provide the first genetic evidence that matrix metalloproteinase 9 (MMP9) regulates crucial events during adult fracture repair. We demonstrate that MMP9 mediates vascular invasion of the hypertrophic cartilage callus, and that Mmp9(-/-) mice have non-unions and delayed unions of their fractures caused by persistent cartilage at the injury site. This MMP9- dependent delay in skeletal healing is not due to a lack of vascular endothelial growth factor (VEGF) or VEGF receptor expression, but may instead be due to the lack of VEGF bioavailability in the mutant because recombinant VEGF can rescue Mmp9(-/-) non-unions. We also found that Mmp9(-/-) mice generate a large cartilage callus even when fractured bones are stabilized, which implicates MMP9 in the regulation of chondrogenic and osteogenic cell differentiation during early stages of repair. In conclusion, the resemblance between Mmp9(-/-) fetal skeletal defects and those that emerge during Mmp9(-/-) adult repair offer the strongest evidence to date that similar mechanisms are employed to achieve bone formation, regardless of age.

摘要

成体骨骼组织的再生需要及时将骨骼祖细胞募集到损伤部位,使这些细胞分化为骨或软骨,并重新建立血管网络以维持细胞活力。这些细胞事件中任何一个受到干扰都可能对骨骼修复过程产生不利影响。尽管骨折修复已与胎儿骨骼发育进行了比较,但修复过程实际重现胎儿程序的程度仍不确定。在这里,我们提供了首个遗传学证据,表明基质金属蛋白酶9(MMP9)在成体骨折修复过程中调节关键事件。我们证明MMP9介导肥大软骨痂的血管侵入,并且Mmp9基因敲除小鼠由于损伤部位持续存在软骨而出现骨折不愈合和延迟愈合。这种依赖MMP9的骨骼愈合延迟并非由于缺乏血管内皮生长因子(VEGF)或VEGF受体表达,而是可能由于突变体中VEGF生物利用度不足,因为重组VEGF可以挽救Mmp9基因敲除小鼠的骨折不愈合。我们还发现,即使骨折骨骼得到固定,Mmp9基因敲除小鼠仍会产生大量软骨痂,这表明MMP9在修复早期阶段软骨生成和成骨细胞分化的调节中发挥作用。总之,Mmp9基因敲除小鼠的胎儿骨骼缺陷与Mmp9基因敲除小鼠成体修复过程中出现的缺陷之间的相似性提供了迄今为止最有力的证据,表明无论年龄大小,都采用相似的机制来实现骨形成。

相似文献

1
Altered fracture repair in the absence of MMP9.
Development. 2003 Sep;130(17):4123-33. doi: 10.1242/dev.00559.
2
MMP9 regulates the cellular response to inflammation after skeletal injury.
Bone. 2013 Jan;52(1):111-9. doi: 10.1016/j.bone.2012.09.018. Epub 2012 Sep 23.
3
Impaired remodeling phase of fracture repair in the absence of matrix metalloproteinase-2.
Dis Model Mech. 2011 Mar;4(2):203-11. doi: 10.1242/dmm.006304. Epub 2010 Dec 6.
4
Does adult fracture repair recapitulate embryonic skeletal formation?
Mech Dev. 1999 Sep;87(1-2):57-66. doi: 10.1016/s0925-4773(99)00142-2.
6
Impaired bone fracture healing in matrix metalloproteinase-13 deficient mice.
Biochem Biophys Res Commun. 2007 Mar 23;354(4):846-51. doi: 10.1016/j.bbrc.2006.12.234. Epub 2007 Jan 19.
7
Altered endochondral bone development in matrix metalloproteinase 13-deficient mice.
Development. 2004 Dec;131(23):5883-95. doi: 10.1242/dev.01461.
8
Kruppel-like factor 5 causes cartilage degradation through transactivation of matrix metalloproteinase 9.
J Biol Chem. 2008 Sep 5;283(36):24682-9. doi: 10.1074/jbc.M709857200. Epub 2008 Jul 10.
10
Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover.
Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9656-61. doi: 10.1073/pnas.152324099. Epub 2002 Jul 12.

引用本文的文献

4
Oral Citrate Supplementation Mitigates Age-Associated Pathologic Intervertebral Disc Calcification in LG/J Mice.
Aging Cell. 2025 May;24(5):e14504. doi: 10.1111/acel.14504. Epub 2025 Feb 11.
5
Beyond resorption: osteoclasts as drivers of bone formation.
Cell Regen. 2024 Oct 11;13(1):22. doi: 10.1186/s13619-024-00205-x.
7
M2 Macrophages Guide Periosteal Stromal Cell Recruitment and Initiate Bone Injury Regeneration.
Biomedicines. 2024 May 29;12(6):1205. doi: 10.3390/biomedicines12061205.
9
Endothelial SMAD1/5 signaling couples angiogenesis to osteogenesis in juvenile bone.
Commun Biol. 2024 Mar 13;7(1):315. doi: 10.1038/s42003-024-05915-1.
10
The importance of BMPs and TGF-βs for endochondral bone repair - A longitudinal study in hip arthroplasty patients.
Bone Rep. 2023 Nov 10;19:101723. doi: 10.1016/j.bonr.2023.101723. eCollection 2023 Dec.

本文引用的文献

1
Mechanical induction in limb morphogenesis: the role of growth-generated strains and pressures.
Bone. 2002 Dec;31(6):645-53. doi: 10.1016/s8756-3282(02)00911-0.
2
Interaction between active motion and exogenous transforming growth factor Beta during tibial fracture repair.
J Orthop Trauma. 2003 Jan;17(1):2-10. doi: 10.1097/00005131-200301000-00002.
3
The effect of mechanical stability on local vascularization and tissue differentiation in callus healing.
J Orthop Res. 2002 Sep;20(5):1099-105. doi: 10.1016/S0736-0266(02)00044-X.
4
A model for intramembranous ossification during fracture healing.
J Orthop Res. 2002 Sep;20(5):1091-8. doi: 10.1016/S0736-0266(02)00017-7.
5
Hyaluronan-CD44 interaction hampers migration of osteoclast-like cells by down-regulating MMP-9.
J Cell Biol. 2002 Sep 16;158(6):1133-44. doi: 10.1083/jcb.200202120.
6
Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover.
Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9656-61. doi: 10.1073/pnas.152324099. Epub 2002 Jul 12.
8
Cyclo-oxygenase 2 function is essential for bone fracture healing.
J Bone Miner Res. 2002 Jun;17(6):963-76. doi: 10.1359/jbmr.2002.17.6.963.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验