Suppr超能文献

通过序列分析预测HIV-1共受体的使用情况。

Predicting HIV-1 coreceptor usage with sequence analysis.

作者信息

Jensen Mark A, van 't Wout Angélique B

机构信息

Department of Microbiology, Box 358070, University of Washington School of Medicine, Seattle, WA 98195-8070, USA.

出版信息

AIDS Rev. 2003 Apr-Jun;5(2):104-12.

Abstract

Bioinformatics approaches are increasingly being used to identify and understand the genetic variation underlying changes in HIV-1 biological phenotype. The variable regions of the viral envelope are the major determinant of virus coreceptor usage and cell tropism. Specifically, amino acids 11 and 25 in the 3rd variable (V3) loop have been found to strongly influence viral syncytium inducing capacity and coreceptor usage. Many additional V3 loop changes, however, as well as changes elsewhere in Env, are thought to contribute to phenotype. In this review we describe several recently developed methods to analyze this variability and their use to predict biological phenotype based on sequence information. These approaches have identified changes in the V3 loop, in addition to the known changes at positions 11 and 25, that affect phenotype and significantly enhance our ability to predict phenotype from genotype. Besides improving phenotype prediction, methods that score V3 sequences on a continuous scale can also assist in the interpretation of evolutionary information about shifts in phenotype, and the relationship between that evolution and pathogenesis. Several examples and potential practical applications of this scoring are discussed. We conclude that advances in computational approaches have enhanced both our ability to predict and to understand HIV-1 biological phenotype evolution. Further development of these methods, by extending analysis to regions outside the V3 loop and to clades beyond subtype B, will extend our understanding of HIV-1 pathogenesis and inform treatment strategies.

摘要

生物信息学方法越来越多地用于识别和理解HIV-1生物学表型变化背后的基因变异。病毒包膜的可变区是病毒共受体使用和细胞嗜性的主要决定因素。具体而言,已发现第三个可变(V3)环中的第11和25位氨基酸对病毒诱导合胞体的能力和共受体使用有强烈影响。然而,许多其他V3环变化以及Env其他部位的变化也被认为对表型有贡献。在本综述中,我们描述了几种最近开发的分析这种变异性的方法,以及它们基于序列信息预测生物学表型的用途。这些方法除了确定了第11和25位已知变化外,还发现了V3环中影响表型的变化,并显著提高了我们从基因型预测表型的能力。除了改善表型预测外,以连续尺度对V3序列进行评分的方法还可以帮助解释有关表型转变的进化信息,以及这种进化与发病机制之间的关系。本文讨论了这种评分的几个例子和潜在的实际应用。我们得出结论,计算方法的进步增强了我们预测和理解HIV-1生物学表型进化的能力。通过将分析扩展到V3环以外的区域和B亚型以外的分支,进一步开发这些方法将扩展我们对HIV-1发病机制的理解,并为治疗策略提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验