Butovas Sergejus, Schwarz Cornelius
Abteilung Kognitive Neurologie, Neurologische Universitätsklinik Tübingen, 72076 Tübingen, Germany.
J Neurophysiol. 2003 Nov;90(5):3024-39. doi: 10.1152/jn.00245.2003. Epub 2003 Jul 23.
Using microstimulation to imprint meaningful activity patterns into intrinsically highly interconnected neuronal substrates is hampered by activation of fibers of passage leading to a spatiotemporal "blur" of activity. The focus of the present study was to characterize the shape of this blur in the neocortex to arrive at an estimate of the resolution with which signals can be transmitted by multielectrode stimulation. The horizontal spread of significant unit activity evoked by near-threshold focal electrical stimulation (charge transfer 0.8-4.8 nC) and multielectrode recording in the face representation of the primary somatosensory cortex of ketamine anesthetized rats was determined to be about 1,350 microm. The evoked activity inside this range consisted in a sequence of fast excitatory response followed by an inhibition lasting >100 ms. These 2 responses could not be separated by varying the intensity of stimulation while a slow excitatory rebound after the inhibitory response was restricted to higher stimulus intensities (>2.4 nC). Stimulation frequencies of 20 and 40 Hz evoked repetitive excitatory response standing out against a continuous background of inhibition. At 5- and 10-Hz stimulation, the inhibitory response showed a complex interaction pattern attributed to highly sublinear superposition of individual inhibitory responses. The present data help to elucidate the neuronal underpinnings of behavioral effects of microstimulation. Furthermore, they provide essential information to determine spatiotemporal constraints for purposeful multielectrode stimulation in the neocortex.
利用微刺激将有意义的活动模式印记到内在高度互联的神经元基质中,会受到传导纤维激活的阻碍,导致活动在时空上出现“模糊”。本研究的重点是刻画这种模糊在新皮层中的形态,以便估计多电极刺激能够传输信号的分辨率。通过对氯胺酮麻醉大鼠初级体感皮层面部表征区域进行近阈值局部电刺激(电荷转移0.8 - 4.8 nC)和多电极记录,确定由其诱发的显著单位活动的水平扩散约为1350微米。在此范围内诱发的活动包括一系列快速兴奋性反应,随后是持续超过100毫秒的抑制。在改变刺激强度时,这两种反应无法区分,而抑制反应后的缓慢兴奋性反弹则仅限于较高刺激强度(>2.4 nC)。20赫兹和40赫兹的刺激频率诱发了重复性兴奋性反应,在持续的抑制背景下尤为突出。在5赫兹和10赫兹刺激下,抑制反应呈现出一种复杂的相互作用模式,这归因于各个抑制反应的高度次线性叠加。本研究数据有助于阐明微刺激行为效应的神经元基础。此外,它们为确定新皮层中有目的的多电极刺激的时空限制提供了重要信息。