Suppr超能文献

Basilar-membrane responses to multicomponent (Schroeder-phase) signals: understanding intensity effects.

作者信息

Summers Van, de Boer Egbert, Nuttall Alfred L

机构信息

Army Audiology & Speech Center, Walter Reed Army Medical Center, Washington, DC 20307-5001, USA.

出版信息

J Acoust Soc Am. 2003 Jul;114(1):294-306. doi: 10.1121/1.1580813.

Abstract

Harmonic complexes comprised of the same spectral components in either positive-Schroeder (+Schr) or negative-Schroeder (-Schr) phase [see Schroeder, IEEE Trans. Inf. Theory 16, 85-89 (1970)] have identical long-term spectra and similar waveform envelopes. However, localized patterns of basilar-membrane (BM) excitation can be quite different in response to these two stimuli. Measurements in chinchillas showed more modulated (peakier) BM excitation for +Schr than -Schr complexes [Recio and Rhode, J. Acoust. Soc. Am. 108, 2281-2298 (2000)]. In the current study, laser velocimetry was used to examine BM responses at a location tuned to approximately 17 kHz in the basal turn of the guinea-pig cochlea, for +Schr and -Schr complexes with a 203-Hz fundamental frequency and including 101 equal-amplitude components from 2031 to 22,344 Hz. At 35-dB SPL, +Schr response waveforms showed greater amplitude modulation than -Schr responses. With increasing stimulation level, internal modulation decreased for both complexes. To understand the observed phenomena quantitatively, responses were predicted on the basis of a linearized model of the cochlea. Prediction was based on an "indirect impulse response" measured in the same animal. Response waveforms for Schroeder-phase signals were accurately predicted, provided that the level of the indirect impulse used in prediction closely matched the level of the Schroeder-phase stimulus. This result confirms that the underlying model, which originally was developed for noise stimuli, is valid for stimuli that produce completely different response waveforms. Moreover, it justifies explanation of cochlear filtering (i.e., differential treatment of different frequencies) in terms of a linear system.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验