Suppr超能文献

在小脑颗粒细胞中表达的多种不同类型钾通道的作用是什么?

What are the roles of the many different types of potassium channel expressed in cerebellar granule cells?

作者信息

Mathie Alistair, Clarke Catherine E, Ranatunga Kishani M, Veale Emma L

机构信息

Biophysics Section, Blackett Laboratory, Department of Biological Sciences, Imperial College of Science Technology and Medicine, London, UK.

出版信息

Cerebellum. 2003;2(1):11-25. doi: 10.1080/14734220310015593.

Abstract

Potassium (K) channels have a key role in the regulation of neuronal excitability. Over a hundred different subunits encoding distinct K channel subtypes have been identified so far. A major challenge is to relate these many different channel subunits to the functional K currents observed in native neurons. In this review, we have concentrated on cerebellar granule neurons (CGNs). We have considered each of the three principal super families of K channels in turn, namely, the six transmembrane domain, voltage-gated super family, the two transmembrane domain, inward-rectifier super family and the four transmembrane domain, leak channel super family. For each super family, we have identified the subunits that are expressed in CGNs and related the properties of these expressed channel subunits to the functional currents seen in electrophysiological recordings from these neurons. In some cases, there are strong molecular candidates for proteins underlying observed currents. In other cases the correlation is less clear. We show that at least 26 potassium channel alpha subunits are moderately or strongly expressed in CGNs. Nevertheless, a good empirical model of CGN function has been obtained with just six distinct K conductances. The transient KA current in CGNs, seems due to expression of Kv4.2 channels or Kv4.2/4.3 heteromers, while the KCa current is due to expression of large-conductance slo channels. The G-protein activated KIR current is probably due to heteromeric expression of KIR3.1 and KIR3.2. Perhaps KIR2.2 subunits underlie the KIR current when it is constitutively active. The leak conductance can be attributed to TASK-1 and or TASK-3 channels. With less certainty, the IK-slow current may be due to expression of one or more members of the KCNQ or EAG family. Lastly, the delayed-rectifier Kv current has as many as six different potential contributors from the extensive Kv family of alpha subunits. Since many of these subunits are highly regulated by neurotransmitters, physiological regulators and, often, auxiliary subunits, the resulting electrical properties of CGNs may be highly dynamic and subject to constant fine-tuning.

摘要

钾(K)通道在调节神经元兴奋性方面起着关键作用。迄今为止,已鉴定出一百多种编码不同K通道亚型的不同亚基。一个主要挑战是将这些许多不同的通道亚基与在天然神经元中观察到的功能性K电流联系起来。在本综述中,我们专注于小脑颗粒神经元(CGN)。我们依次考虑了K通道的三个主要超家族,即六个跨膜结构域的电压门控超家族、两个跨膜结构域的内向整流超家族和四个跨膜结构域的泄漏通道超家族。对于每个超家族,我们确定了在CGN中表达的亚基,并将这些表达的通道亚基的特性与从这些神经元的电生理记录中看到的功能性电流联系起来。在某些情况下,有强有力的分子候选物可作为观察到的电流背后的蛋白质。在其他情况下,相关性则不太明确。我们表明,至少26种钾通道α亚基在CGN中中度或强烈表达。然而,仅用六种不同的K电导就获得了一个良好的CGN功能经验模型。CGN中的瞬时KA电流似乎是由于Kv4.2通道或Kv4.2/4.3异聚体的表达,而KCa电流是由于大电导slo通道的表达。G蛋白激活的KIR电流可能是由于KIR3.1和KIR3.2的异聚体表达。当KIR电流组成性激活时,也许KIR2.2亚基是其基础。泄漏电导可归因于TASK-1和/或TASK-3通道。不太确定的是,IK-slow电流可能是由于KCNQ或EAG家族的一个或多个成员的表达。最后,延迟整流Kv电流有多达六个不同的潜在贡献者,来自广泛的Kvα亚基家族。由于这些亚基中的许多都受到神经递质、生理调节剂以及通常的辅助亚基的高度调节,CGN产生的电特性可能具有高度动态性,并不断受到微调。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验