Suppr超能文献

一种简单的非侵入性指标可预测慢性丙型肝炎患者的显著肝纤维化和肝硬化。

A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C.

作者信息

Wai Chun-Tao, Greenson Joel K, Fontana Robert J, Kalbfleisch John D, Marrero Jorge A, Conjeevaram Hari S, Lok Anna S-F

机构信息

Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.

出版信息

Hepatology. 2003 Aug;38(2):518-26. doi: 10.1053/jhep.2003.50346.

Abstract

Information on the stage of liver fibrosis is essential in managing chronic hepatitis C (CHC) patients. However, most models for predicting liver fibrosis are complicated and separate formulas are needed to predict significant fibrosis and cirrhosis. The aim of our study was to construct one simple model consisting of routine laboratory data to predict both significant fibrosis and cirrhosis among patients with CHC. Consecutive treatment-naive CHC patients who underwent liver biopsy over a 25-month period were divided into 2 sequential cohorts: training set (n = 192) and validation set (n = 78). The best model for predicting both significant fibrosis (Ishak score > or = 3) and cirrhosis in the training set included platelets, aspartate aminotransferase (AST), and alkaline phosphatase with an area under ROC curves (AUC) of 0.82 and 0.92, respectively. A novel index, AST to platelet ratio index (APRI), was developed to amplify the opposing effects of liver fibrosis on AST and platelet count. The AUC of APRI for predicting significant fibrosis and cirrhosis were 0.80 and 0.89, respectively, in the training set. Using optimized cut-off values, significant fibrosis could be predicted accurately in 51% and cirrhosis in 81% of patients. The AUC of APRI for predicting significant fibrosis and cirrhosis in the validation set were 0.88 and 0.94, respectively. In conclusion, our study showed that a simple index using readily available laboratory results can identify CHC patients with significant fibrosis and cirrhosis with a high degree of accuracy. Application of this index may decrease the need for staging liver biopsy specimens among CHC patients.

摘要

肝纤维化分期信息对于慢性丙型肝炎(CHC)患者的管理至关重要。然而,大多数预测肝纤维化的模型都很复杂,需要不同的公式来预测显著纤维化和肝硬化。我们研究的目的是构建一个由常规实验室数据组成的简单模型,以预测CHC患者的显著纤维化和肝硬化。在25个月期间接受肝活检的连续初治CHC患者被分为两个连续队列:训练集(n = 192)和验证集(n = 78)。训练集中预测显著纤维化(Ishak评分≥3)和肝硬化的最佳模型包括血小板、天冬氨酸转氨酶(AST)和碱性磷酸酶,其ROC曲线下面积(AUC)分别为0.82和0.92。开发了一种新的指标,AST与血小板比值指数(APRI),以放大肝纤维化对AST和血小板计数的相反影响。训练集中APRI预测显著纤维化和肝硬化的AUC分别为0.80和0.89。使用优化的临界值,可在51%的患者中准确预测显著纤维化,在81%的患者中准确预测肝硬化。验证集中APRI预测显著纤维化和肝硬化的AUC分别为0.88和0.94。总之,我们的研究表明,一个使用现成实验室结果的简单指标可以高度准确地识别患有显著纤维化和肝硬化的CHC患者。应用该指标可能会减少CHC患者肝活检标本分期的需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验