Suppr超能文献

具有时变延迟的区间Hopfield神经网络的全局鲁棒稳定性

Global and robust stability of interval Hopfield neural networks with time-varying delays.

作者信息

Liao Xiaofeng, Wang Jun, Cao Jinde

机构信息

Department of Computer Science and Engineering, Chongqing University, Chongqing 400044, P. R. China.

出版信息

Int J Neural Syst. 2003 Jun;13(3):171-82. doi: 10.1142/S012906570300142X.

Abstract

In this paper, we investigate the problem of global and robust stability of a class of interval Hopfield neural networks that have time-varying delays. Some criteria for the global and robust stability of such networks are derived, by means of constructing suitable Lyapunov functionals for the networks. As a by-product, for the conventional Hopfield neural networks with time-varying delays, we also obtain some new criteria for their global and asymptotic stability.

摘要

在本文中,我们研究了一类具有时变延迟的区间Hopfield神经网络的全局鲁棒稳定性问题。通过为这类网络构造合适的Lyapunov泛函,得到了此类网络全局鲁棒稳定性的一些判据。作为一个附带结果,对于具有时变延迟的传统Hopfield神经网络,我们也获得了它们全局渐近稳定性的一些新判据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验