Kulkarni R V, Slepoy A, Singh R R P, Cox D L, Pázmándi F
Department of Physics, University of California, Davis, California, USA.
Biophys J. 2003 Aug;85(2):707-18. doi: 10.1016/S0006-3495(03)74514-7.
We apply a theoretical aggregation model to laboratory and epidemiological prion disease incubation time data. In our model, slow growth of misfolded protein aggregates from small initial seeds controls the latent or lag phase; aggregate fissioning and subsequent spreading leads to an exponential growth phase. Our model accounts for the striking reproducibility of incubation times for high dose inoculation of lab animals. In particular, low dose yields broad incubation time distributions, and increasing dose narrows distributions and yields sharply defined onset times. We also explore how incubation time statistics depend upon aggregate morphology. We apply our model to fit the experimental dose-incubation curves for distinct strains of scrapie, and explain logarithmic variation at high dose and deviations from logarithmic behavior at low dose. We use this to make testable predictions for infectivity time-course experiments.
我们将一个理论聚集模型应用于实验室和流行病学朊病毒疾病潜伏期数据。在我们的模型中,从小的初始种子开始的错误折叠蛋白聚集体的缓慢生长控制着潜伏期或延迟期;聚集体裂变及随后的扩散导致指数增长期。我们的模型解释了高剂量接种实验动物时潜伏期惊人的可重复性。特别是,低剂量会产生较宽的潜伏期分布,而增加剂量会使分布变窄并产生明确界定的发病时间。我们还探讨了潜伏期统计数据如何依赖于聚集体形态。我们应用我们的模型来拟合不同毒株羊瘙痒病的实验剂量-潜伏期曲线,并解释高剂量下的对数变化以及低剂量下与对数行为的偏差。我们以此对感染性时间进程实验做出可检验的预测。