Suppr超能文献

通过电光采样直接测量细菌视紫红质的光电响应时间。

Direct measurement of the photoelectric response time of bacteriorhodopsin via electro-optic sampling.

作者信息

Xu J, Stickrath A B, Bhattacharya P, Nees J, Váró G, Hillebrecht J R, Ren L, Birge R R

机构信息

Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Biophys J. 2003 Aug;85(2):1128-34. doi: 10.1016/S0006-3495(03)74549-4.

Abstract

The photovoltaic signal associated with the primary photochemical event in an oriented bacteriorhodopsin film is measured by directly probing the electric field in the bacteriorhodopsin film using an ultrafast electro-optic sampling technique. The inherent response time is limited only by the laser pulse width of 500 fs, and permits a measurement of the photovoltage with a bandwidth of better than 350 GHz. All previous published studies have been carried out with bandwidths of 50 GHz or lower. We observe a charge buildup with an exponential formation time of 1.68 +/- 0.05 ps and an initial decay time of 31.7 ps. Deconvolution with a 500-fs Gaussian excitation pulse reduces the exponential formation time to 1.61 +/- 0.04 ps. The photovoltaic signal continues to rise for 4.5 ps after excitation, and the voltage profile corresponds well with the population dynamics of the K state. The origin of the fast photovoltage is assigned to the partial isomerization of the chromophore and the coupled motion of the Arg-82 residue during the primary event.

摘要

通过使用超快电光采样技术直接探测细菌视紫红质薄膜中的电场,测量了取向细菌视紫红质薄膜中与初级光化学事件相关的光伏信号。其固有响应时间仅受500飞秒激光脉冲宽度的限制,能够测量带宽优于350吉赫兹的光电压。此前所有已发表的研究都是在50吉赫兹或更低的带宽下进行的。我们观察到电荷积累,其指数形成时间为1.68±0.05皮秒,初始衰减时间为31.7皮秒。用500飞秒高斯激发脉冲进行去卷积将指数形成时间缩短至1.61±0.04皮秒。激发后光伏信号持续上升4.5皮秒,电压分布与K态的布居动力学非常吻合。快速光电压的起源归因于发色团的部分异构化以及初级事件期间精氨酸-82残基的耦合运动。

相似文献

1
Direct measurement of the photoelectric response time of bacteriorhodopsin via electro-optic sampling.
Biophys J. 2003 Aug;85(2):1128-34. doi: 10.1016/S0006-3495(03)74549-4.
2
Photoelectric response of polarization sensitive bacteriorhodopsin films.
Biosens Bioelectron. 2004 Mar 15;19(8):869-74. doi: 10.1016/j.bios.2003.08.017.
3
Monolithically integrated bacteriorhodopsin-GaAs/GaAlAs phototransceiver.
Opt Lett. 2004 Oct 1;29(19):2264-6. doi: 10.1364/ol.29.002264.
4
Photoelectric properties of a detector based on dried bacteriorhodopsin film.
Biosens Bioelectron. 2006 Jan 15;21(7):1309-19. doi: 10.1016/j.bios.2005.06.003. Epub 2005 Jul 21.
7
Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities.
Biophys J. 2007 Mar 15;92(6):2223-9. doi: 10.1529/biophysj.106.098806. Epub 2007 Jan 5.
8
Charge displacement in bacteriorhodopsin during the forward and reverse bR-K phototransition.
Biophys J. 1995 Nov;69(5):2060-5. doi: 10.1016/S0006-3495(95)80076-7.
9
Monolithically integrated bacteriorhodopsin/semiconductor opto-electronic integrated circuit for a bio-photoreceiver.
Biosens Bioelectron. 2004 Mar 15;19(8):885-92. doi: 10.1016/j.bios.2003.08.018.

引用本文的文献

2
Proteomonas sulcata ACR1: A Fast Anion Channelrhodopsin.
Photochem Photobiol. 2016 Mar;92(2):257-263. doi: 10.1111/php.12558. Epub 2016 Feb 1.
3
Mechanism divergence in microbial rhodopsins.
Biochim Biophys Acta. 2014 May;1837(5):546-52. doi: 10.1016/j.bbabio.2013.06.006. Epub 2013 Jul 3.
4
Directed evolution of bacteriorhodopsin for applications in bioelectronics.
J R Soc Interface. 2013 May 15;10(84):20130197. doi: 10.1098/rsif.2013.0197. Print 2013 Jul 6.
5
Control of retinal isomerization in bacteriorhodopsin in the high-intensity regime.
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):10896-900. doi: 10.1073/pnas.0904589106. Epub 2009 Jun 29.
6
Terahertz radiation from bacteriorhodopsin reveals correlated primary electron and proton transfer processes.
Proc Natl Acad Sci U S A. 2008 May 13;105(19):6888-93. doi: 10.1073/pnas.0706336105. Epub 2008 May 2.
7
Resonant optical rectification in bacteriorhodopsin.
Proc Natl Acad Sci U S A. 2004 May 25;101(21):7971-5. doi: 10.1073/pnas.0306789101. Epub 2004 May 17.

本文引用的文献

2
Evidence that the photoelectric response of bacteriorhodopsin occurs in less than 5 picoseconds.
Biophys J. 1990 May;57(5):1099-101. doi: 10.1016/S0006-3495(90)82629-1.
3
Early picosecond events in the photocycle of bacteriorhodopsin.
Biophys J. 1986 Mar;49(3):651-62. doi: 10.1016/S0006-3495(86)83692-X.
4
Monolithically integrated bacteriorhodopsin-GaAs field-effect transistor photoreceiver.
Opt Lett. 2002 May 15;27(10):839-41. doi: 10.1364/ol.27.000839.
6
Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor.
Science. 1992 Jan 17;255(5042):342-4. doi: 10.1126/science.255.5042.342.
9
Molecular mechanism of spectral tuning in sensory rhodopsin II.
Biochemistry. 2001 Nov 20;40(46):13906-14. doi: 10.1021/bi0116487.
10
Proton pumps: mechanism of action and applications.
Trends Biotechnol. 2001 Apr;19(4):140-4. doi: 10.1016/s0167-7799(01)01576-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验