Suppr超能文献

Aux/IAA蛋白水解作用的加速对生长素具有特异性,且不依赖于AXR1。

Acceleration of Aux/IAA proteolysis is specific for auxin and independent of AXR1.

作者信息

Zenser Nathan, Dreher Kate A, Edwards Stephanie R, Callis Judy

机构信息

Section of Molecular and Cellular Biology and Plant Biology Graduate Group, University of California-Davis, 1 Shields Ave., Davis, CA 95616, USA.

出版信息

Plant J. 2003 Aug;35(3):285-94. doi: 10.1046/j.1365-313x.2003.01801.x.

Abstract

Aux/IAA proteins are short-lived transcriptional regulators involved in auxin signaling. Using Aux/IAA luciferase (LUC) fusion proteins expressed in Arabidopsis thaliana, we previously showed that rapid degradation of these proteins requires conserved Aux/IAA domain II and that exogenous auxin accelerates their degradation. To further examine auxin-mediated increases in proteolysis, the degradation of two other LUC fusion proteins, a non-cleavable ubiquitin LUC fusion (UB1-72::LUC) and SAUR15::LUC was determined in vivo in seedlings. Their half-lives were 20 +/- 4 and 104 +/- 10 min, respectively. SAUR15::LUC half-life was not affected by pre-incubation with 2,4-D. Auxin did not have an equivalent effect on UB(1-72)::LUC steady-state levels as compared to PsIAA6:LUC. LUC fused to an Aux/IAA domain II degraded more rapidly following auxin application, demonstrating that this region is sufficient for auxin-mediated acceleration of proteolysis. Hormonal cross-talk at the level of Aux/IAA proteolysis was examined. 1-aminocyclopropane-1-carboxylic acid (ACC), benzyladenine (BA), abscisic acid (ABA), and brassinolide (BL) did not affect the degradation rate of IAA1::LUC, and gibberellic acid (GA3) and salicylic acid (SA) did not specifically affect the steady-state levels of Aux/IAA::LUC proteins. An Aux/IAA::LUC transgene was crossed into the auxin resistant-1 (axr1-12) background. In axr1-12, the half-life of PsIAA6(1-73)::LUC increased 4.5-fold, but proteolysis still accelerated in response to exogenous auxin. These data suggest that auxin is the only phytohormone that accelerates Aux/IAA proteolysis, and that this acceleration is specific for Aux/IAA proteins. In addition, AXR1 plays an important role in rapid basal proteolysis of Aux/IAA proteins, but is not required for auxin-mediated acceleration of their degradation.

摘要

生长素/吲哚-3-乙酸(Aux/IAA)蛋白是参与生长素信号传导的短寿命转录调节因子。利用在拟南芥中表达的Aux/IAA荧光素酶(LUC)融合蛋白,我们之前表明这些蛋白的快速降解需要保守的Aux/IAA结构域II,并且外源生长素会加速它们的降解。为了进一步研究生长素介导的蛋白水解增加,在幼苗体内测定了另外两种LUC融合蛋白,即不可切割的泛素LUC融合蛋白(UB1-72::LUC)和SAUR15::LUC的降解情况。它们的半衰期分别为20±4分钟和104±10分钟。SAUR15::LUC的半衰期不受2,4-D预孵育的影响。与PsIAA6:LUC相比,生长素对UB(1-72)::LUC的稳态水平没有同等的影响。与Aux/IAA结构域II融合的LUC在施加生长素后降解更快,表明该区域足以介导生长素加速蛋白水解。研究了Aux/IAA蛋白水解水平上的激素相互作用。1-氨基环丙烷-1-羧酸(ACC)、苄基腺嘌呤(BA)、脱落酸(ABA)和油菜素内酯(BL)不影响IAA1::LUC的降解速率,赤霉素(GA3)和水杨酸(SA)也不特异性影响Aux/IAA::LUC蛋白的稳态水平。将一个Aux/IAA::LUC转基因导入生长素抗性-1(axr1-12)背景中。在axr1-12中,PsIAA6(1-73)::LUC的半衰期增加了4.5倍,但蛋白水解仍会对外源生长素产生加速反应。这些数据表明,生长素是唯一能加速Aux/IAA蛋白水解的植物激素,并且这种加速对Aux/IAA蛋白具有特异性。此外,AXR1在Aux/IAA蛋白的快速基础蛋白水解中起重要作用,但生长素介导的其降解加速并不需要AXR1。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验