Zenser Nathan, Dreher Kate A, Edwards Stephanie R, Callis Judy
Section of Molecular and Cellular Biology and Plant Biology Graduate Group, University of California-Davis, 1 Shields Ave., Davis, CA 95616, USA.
Plant J. 2003 Aug;35(3):285-94. doi: 10.1046/j.1365-313x.2003.01801.x.
Aux/IAA proteins are short-lived transcriptional regulators involved in auxin signaling. Using Aux/IAA luciferase (LUC) fusion proteins expressed in Arabidopsis thaliana, we previously showed that rapid degradation of these proteins requires conserved Aux/IAA domain II and that exogenous auxin accelerates their degradation. To further examine auxin-mediated increases in proteolysis, the degradation of two other LUC fusion proteins, a non-cleavable ubiquitin LUC fusion (UB1-72::LUC) and SAUR15::LUC was determined in vivo in seedlings. Their half-lives were 20 +/- 4 and 104 +/- 10 min, respectively. SAUR15::LUC half-life was not affected by pre-incubation with 2,4-D. Auxin did not have an equivalent effect on UB(1-72)::LUC steady-state levels as compared to PsIAA6:LUC. LUC fused to an Aux/IAA domain II degraded more rapidly following auxin application, demonstrating that this region is sufficient for auxin-mediated acceleration of proteolysis. Hormonal cross-talk at the level of Aux/IAA proteolysis was examined. 1-aminocyclopropane-1-carboxylic acid (ACC), benzyladenine (BA), abscisic acid (ABA), and brassinolide (BL) did not affect the degradation rate of IAA1::LUC, and gibberellic acid (GA3) and salicylic acid (SA) did not specifically affect the steady-state levels of Aux/IAA::LUC proteins. An Aux/IAA::LUC transgene was crossed into the auxin resistant-1 (axr1-12) background. In axr1-12, the half-life of PsIAA6(1-73)::LUC increased 4.5-fold, but proteolysis still accelerated in response to exogenous auxin. These data suggest that auxin is the only phytohormone that accelerates Aux/IAA proteolysis, and that this acceleration is specific for Aux/IAA proteins. In addition, AXR1 plays an important role in rapid basal proteolysis of Aux/IAA proteins, but is not required for auxin-mediated acceleration of their degradation.
生长素/吲哚-3-乙酸(Aux/IAA)蛋白是参与生长素信号传导的短寿命转录调节因子。利用在拟南芥中表达的Aux/IAA荧光素酶(LUC)融合蛋白,我们之前表明这些蛋白的快速降解需要保守的Aux/IAA结构域II,并且外源生长素会加速它们的降解。为了进一步研究生长素介导的蛋白水解增加,在幼苗体内测定了另外两种LUC融合蛋白,即不可切割的泛素LUC融合蛋白(UB1-72::LUC)和SAUR15::LUC的降解情况。它们的半衰期分别为20±4分钟和104±10分钟。SAUR15::LUC的半衰期不受2,4-D预孵育的影响。与PsIAA6:LUC相比,生长素对UB(1-72)::LUC的稳态水平没有同等的影响。与Aux/IAA结构域II融合的LUC在施加生长素后降解更快,表明该区域足以介导生长素加速蛋白水解。研究了Aux/IAA蛋白水解水平上的激素相互作用。1-氨基环丙烷-1-羧酸(ACC)、苄基腺嘌呤(BA)、脱落酸(ABA)和油菜素内酯(BL)不影响IAA1::LUC的降解速率,赤霉素(GA3)和水杨酸(SA)也不特异性影响Aux/IAA::LUC蛋白的稳态水平。将一个Aux/IAA::LUC转基因导入生长素抗性-1(axr1-12)背景中。在axr1-12中,PsIAA6(1-73)::LUC的半衰期增加了4.5倍,但蛋白水解仍会对外源生长素产生加速反应。这些数据表明,生长素是唯一能加速Aux/IAA蛋白水解的植物激素,并且这种加速对Aux/IAA蛋白具有特异性。此外,AXR1在Aux/IAA蛋白的快速基础蛋白水解中起重要作用,但生长素介导的其降解加速并不需要AXR1。