Zagorevskii Dmitri, Song Minghu, Breneman Curt, Yuan Yang, Fuchs Tarra, Gates Kent S, Greenlief C Michael
Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York, USA.
J Am Soc Mass Spectrom. 2003 Aug;14(8):881-92. doi: 10.1016/S1044-0305(03)00334-9.
Tandem mass spectrometry methods were used to study the sites of protonation and for identification of 3-amino-1,2,4-benzotriazine 1,4-dioxide (1, tirapazamine), and its metabolites (3-amino-1,2,4-benzotriazine 1-oxide (3), 3-amino-1,2,4-benzotriazine 4-oxide (4), 3-amino-1,2,4-benzotriazine (5), and a related isomer 3-amino-1,2,4-benzotriazine 2-oxide (6). Fragmentation pathways of 3 and 5 indicated the 4-N-atom as the most likely site of protonation. Among the N-oxides studied, the 4-oxide (4) showed the highest degree of protonation at the oxygen atom. The differences in collision-induced dissociation of isomeric protonated 1-, 2- and 4-oxides allowed for their identification by LC/MS/MS. Gas phase and liquid phase protonation of tirapazamine occurred exclusively at the oxygen in the 4-position. A loss of OH radical from these ions (2(+)) resulted in ionized 3. Neutralization-reionization mass spectrometry (NR MS) experiments demonstrated the stability of the neutral analogue of protonated tirapazamine in the gas phase in the micro s time-frame. A significant portion of the neutral tirapazamine radicals (2) dissociated by loss of hydroxyl radical during the NR MS event, which indicates that previously proposed mechanisms for redox-activated DNA damage are reasonable. The activation energy for loss of hydroxyl radical from activated tirapazamine (2) was estimated to be approximately 14 kcal mol(-1). Stable neutral analogues of 3 + H and 5 + H ions were also generated in the course of NR MS experiments. Structures of these radicals were assigned to the molecules having an extra hydrogen atom at one of the ring N-atoms. Quantum chemical calculations of protonated 1, 3, 4 and 5 and the corresponding neutrals were performed to assist in the interpretation of experimental results and to help identify their structures.
采用串联质谱法研究了3-氨基-1,2,4-苯并三嗪1,4-二氧化物(1,替拉扎明)及其代谢产物(3-氨基-1,2,4-苯并三嗪1-氧化物(3)、3-氨基-1,2,4-苯并三嗪4-氧化物(4)、3-氨基-1,2,4-苯并三嗪(5)以及一种相关异构体3-氨基-1,2,4-苯并三嗪2-氧化物(6))的质子化位点并进行鉴定。3和5的碎裂途径表明4-N原子是最可能的质子化位点。在所研究的N-氧化物中,4-氧化物(4)在氧原子处显示出最高程度的质子化。异构的质子化1-、2-和4-氧化物在碰撞诱导解离方面的差异使得它们能够通过液相色谱/串联质谱法进行鉴定。替拉扎明的气相和液相质子化仅发生在4位的氧原子上。这些离子(2(+))失去OH自由基会生成离子化的3。中和-再电离质谱(NR MS)实验证明了质子化替拉扎明的中性类似物在气相中微秒时间范围内的稳定性。在NR MS事件期间,相当一部分中性替拉扎明自由基(2)通过失去羟基自由基而解离,这表明先前提出的氧化还原激活DNA损伤的机制是合理的。活化的替拉扎明(2)失去羟基自由基的活化能估计约为14千卡/摩尔(-1)。在NR MS实验过程中还生成了3 + H和5 + H离子的稳定中性类似物。这些自由基的结构被指定为在其中一个环N原子上有一个额外氢原子的分子。对质子化的1、3、4和5以及相应的中性分子进行了量子化学计算,以协助解释实验结果并帮助确定它们的结构。