Marko John F, Poirier Michael G
Department of Physics, University of Illinois at Chicago, 60607, USA.
Biochem Cell Biol. 2003 Jun;81(3):209-20. doi: 10.1139/o03-047.
The enzymes that transcribe, recombine, package, and duplicate the eukaryotic genome all are highly processive and capable of generating large forces. Understanding chromosome function therefore will require analysis of mechanics as well as biochemistry. Here we review development of new biophysical-biochemical techniques for studying the mechanical properties of isolated chromatin fibers and chromosomes. We also discuss microscopy-based experiments on cells that visualize chromosome structure and dynamics. Experiments on chromatin tell us about its flexibility and fluctuation, as well as quantifying the forces generated during chromatin assembly. Experiments on whole chromosomes provide insight into the higher-order organization of chromatin; for example, recent experiments have shown that the mitotic chromosome is held together by isolated chromatin-chromatin links and not a large, mechanically contiguous non-DNA "scaffold".
负责转录、重组、包装和复制真核生物基因组的酶都具有高度的持续性,并且能够产生巨大的力量。因此,要理解染色体功能,就需要对力学和生物化学进行分析。在这里,我们回顾了用于研究分离的染色质纤维和染色体力学特性的新生物物理 - 生物化学技术的发展。我们还讨论了基于显微镜的细胞实验,这些实验可以观察染色体的结构和动态。对染色质的实验告诉我们它的柔韧性和波动情况,以及对染色质组装过程中产生的力进行量化。对整条染色体的实验为染色质的高阶组织提供了见解;例如,最近的实验表明,有丝分裂染色体是通过分离的染色质 - 染色质连接而不是一个大型的、机械连续的非 DNA“支架”维系在一起的。