Suppr超能文献

Comparison of selenium distribution in mice organs after the supplementation with inorganic and organic selenium compound selenosemicarbazide.

作者信息

Musik Irena, Kozioł-Montewka Maria, Toś-Luty Sabina, Donica Helena, Pasternak Kazimierz, Wawrzycki Sławomir

机构信息

Department of Chemistry, Institute of Rural Medicine, Microbiology Department, Clinical Biochemistry Department, Medical University of Lublin.

出版信息

Ann Univ Mariae Curie Sklodowska Med. 2002;57(1):15-22.

Abstract

Studies on selenium organ content and its function in living organisms just like studies on other elements provide interesting results although their interpretation is not always clear. The aim of our study was to determine the concentration and distribution of selenium in several organs and tissues in mice after supplementation with our newly synthesized organic compound of selenium selenosemicarbazide (4-o-tolyl-selenosemicarbazide of o-chlorobenzoic acid) as compared to the effects of the supplementation with inorganic compounds. SWISS mice were fed with both types of compounds at the dose of 10(-3) g Se per kg for the period of 10 days. The concentrations of selenium in brains of mice treated with selenocarbazide and sodium selenite were higher than in controls (38.04 micrograms g-1 and 32.00 micrograms g-1 vs. 26.18 micrograms g-1). There was a statistically significant increase in the selenium contents in lungs after supplementation with selenosemicarbazide and sodium selenite (11.81 micrograms g-1 and 6.79 micrograms g-1 vs. 1.75 micrograms g-1 in controls). We found a statistically insignificant increase in selenium contents in intercostal muscles after supplementation with inorganic selenium compounds and a statistically significant increase after the supplementation with selenosemicarbazide (10.13 micrograms g-1; 14.21 micrograms g-1 and 28.84 micrograms g-1, respectively). Our investigations lead to a conclusion that 4-o-tolyl-seleno-semicarbazide of o-chlorobenzoic acid, an organic selenium compound may be more easily absorbed than inorganic sodium IV selenite.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验