Wakatsuki Yasuo, Hou Zhaomin, Tokunaga Makoto
OM Chem-Tech Co Ltd and RIKEN, Wako-shi, Saitama 351-0198, Japan.
Chem Rec. 2003;3(3):144-57. doi: 10.1002/tcr.10061.
Recently discovered catalytic reactions with ruthenium and lanthanide metal complexes have extended the scope of 1-alkynes as useful reagents. The specific formation of aryl-substituted (Z)-1,3-enzymes via the dimerization of HC(triple bond) CR(1) (R(1) = aryl) has been attained using dimeric lanthanide complexes, the catalytic activity of which appears to be unaffected by time. The dimerization of HC(triple bond) CR(2) (R(2) = t-Bu, SiMe(3)) catalyzed by Ru(cod)(cot)/PR(3) or RuH(2)(PPh(3))(3) produces a good yield of butatrienes (Z)R(2)CH=C=C=CHR(2) with a high degree of selectivity. Under certain conditions, HC(triple bond) C=SiMe(3) dimerizes to yield exclusively (Z)-M(3)Si-C(triple bond) C-CH=CH-SiMe(3). The hydration of HC(triple bond)CR(3) (R(3) = alkyl, aryl) catalyzed by RuCl(2)/PR'(3) or CpRuCl(PR"(3))(2) has realized the first example of anti-Markovnikov regioselectivity in an addition reaction of water that produces aldehydes R(3)CH(2)bond;CHO. The application of this reaction to propargylic alcohols has lead to their formal isomerization to alpha,beta-unsaturated aldehydes. In contrast, the addition of amines R(4)bond;NH(2) (R(4) = aryl) to HCtbond;CR(5) (R(5) = alkyl, aryl) conforms to Markovnikov's rule to produce ketimines R(5)bond;(C=NR(4))bond;CH(3) when catalyzed by a Ru(3)(CO)(12)/additive. Since the reaction can be performed in air without the need for any solvents, it enables the practical synthesis of aromatic ketimines, which are difficult to prepare by conventional methods. The synthesis of indoles using deactivated anilines is one practical application of this reaction. The mechanisms of some of these reactions have been analyzed in detail with the aid of theoretical calculations.
最近发现的钌和镧系金属配合物催化反应扩展了1-炔烃作为有用试剂的范围。使用二聚镧系配合物可通过HC≡CR(1)(R(1)=芳基)的二聚作用特异性生成芳基取代的(Z)-1,3-二烯,其催化活性似乎不受时间影响。Ru(cod)(cot)/PR(3)或RuH₂(PPh₃)₃催化HC≡CR(2)(R(2)=叔丁基、三甲基硅基)的二聚反应能以高选择性高产率生成丁三烯(Z)R(2)CH=C=C=CHR(2)。在某些条件下,HC≡C=SiMe₃二聚生成唯一的(Z)-M₃Si-C≡C-CH=CH-SiMe₃。RuCl₂/PR'(3)或CpRuCl(PR"(3))₂催化HC≡CR(3)(R(3)=烷基、芳基)的水合反应实现了水加成反应中反马氏区域选择性的首例,生成醛R(3)CH₂CHO。该反应应用于炔丙醇可使其形式异构化为α,β-不饱和醛。相反,Ru₃(CO)₁₂/添加剂催化胺R(4)NH₂(R(4)=芳基)与HC≡CR(5)(R(5)=烷基、芳基)的加成反应符合马氏规则生成酮亚胺R(5)(C=NR(4))CH₃。由于该反应可在空气中进行且无需任何溶剂,使得难以通过常规方法制备的芳香酮亚胺的实用合成成为可能。使用钝化苯胺合成吲哚是该反应的一个实际应用。借助理论计算已详细分析了其中一些反应的机理。