Wang Chunhe, Mooney Jeffery L, Meza-Romero Roberto, Chou Yuan K, Huan Jianya, Vandenbark Arthur A, Offner Halina, Burrows Gregory G
Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA.
J Immunol. 2003 Aug 15;171(4):1934-40. doi: 10.4049/jimmunol.171.4.1934.
Recombinant TCR ligands (RTLs) consisting of covalently linked alpha(1) and beta(1) domains of MHC class II molecules tethered to specific antigenic peptides represent minimal TCR ligands. In a previous study we reported that the rat RTL201 construct, containing RT1.B MHC class II domains covalently coupled to the encephalitogenic guinea pig myelin basic protein (Gp-MBP(72-89)) peptide, could prevent and treat actively and passively induced experimental autoimmune encephalomyelitis in vivo by selectively inhibiting Gp-MBP(72-89) peptide-specific CD4(+) T cells. To evaluate the inhibitory signaling pathway, we tested the effects of immobilized RTL201 on T cell activation of the Gp-MBP(72-89)-specific A1 T cell hybridoma. Activation was exquisitely Ag-specific and could not be induced by RTL200 containing the rat MBP(72-89) peptide that differed by a threonine for serine substitution at position 80. Partial activation by RTL201 included a CD3zeta p23/p21 ratio shift, ZAP-70 phosphorylation, calcium mobilization, NFAT activation, and transient IL-2 production. In comparison, anti-CD3epsilon treatment produced stronger activation of these cellular events with additional activation of NF-kappaB and extracellular signal-regulated kinases as well as long term increased IL-2 production. These results demonstrate that RTLs can bind directly to the TCR and modify T cell behavior through a partial activation mechanism, triggering specific downstream signaling events that deplete intracellular calcium stores without fully activating T cells. The resulting Ag-specific activation of the transcription factor NFAT uncoupled from the activation of NF-kappaB or extracellular signal-regulated kinases constitutes a unique downstream activation pattern that accounts for the inhibitory effects of RTL on encephalitogenic CD4(+) T cells.
由与特定抗原肽相连的II类主要组织相容性复合体(MHC)分子的α(1)和β(1)结构域共价连接而成的重组T细胞受体(TCR)配体(RTL)代表了最小的TCR配体。在先前的一项研究中,我们报道了大鼠RTL201构建体,其包含与致脑炎性豚鼠髓鞘碱性蛋白(Gp-MBP(72-89))肽共价偶联的RT1.B MHC II类结构域,通过选择性抑制Gp-MBP(72-89)肽特异性CD4(+) T细胞,可在体内预防和治疗主动和被动诱导的实验性自身免疫性脑脊髓炎。为了评估抑制性信号通路,我们测试了固定化的RTL201对Gp-MBP(72-89)特异性A1 T细胞杂交瘤T细胞活化的影响。活化具有高度的抗原特异性,不能由含有大鼠MBP(72-89)肽的RTL200诱导,该肽在第80位由苏氨酸替代丝氨酸而有所不同。RTL201的部分活化包括CD3ζ p23/p21比值变化、ZAP-70磷酸化、钙动员、NFAT活化和短暂的IL-2产生。相比之下,抗CD3ε处理对这些细胞事件产生更强的活化作用,同时还额外激活了NF-κB和细胞外信号调节激酶,以及长期增加IL-2的产生。这些结果表明,RTL可以直接与TCR结合,并通过部分活化机制改变T细胞行为,触发特定的下游信号事件,耗尽细胞内钙储存而不完全激活T细胞。由此产生的与NF-κB或细胞外信号调节激酶活化解偶联的转录因子NFAT的抗原特异性活化构成了一种独特的下游活化模式,这解释了RTL对致脑炎性CD4(+) T细胞的抑制作用。