Aratani Naoki, Cho Hyun Sun, Ahn Tae Kyu, Cho Sung, Kim Dongho, Sumi Hitoshi, Osuka Atsuhiro
Department of Chemistry, Graduate School of Science, Kyoto University, and Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, Sakyo-ku, Kyoto 606-8502, Japan.
J Am Chem Soc. 2003 Aug 13;125(32):9668-81. doi: 10.1021/ja030002u.
Electronically coupled porphyrin arrays are suitable for artificial light harvesting antenna in light of a large absorption cross-section and fast excitation energy transfer (EET). Along this line, an artificial energy transfer model system has been synthesized, comprising of an energy donating meso-meso linked Zn(II) porphyrin array and an energy accepting 5,15-bisphenylethynylated Zn(II) porphyrin linked via a 1,4-phenylene spacer. This includes an increasing number of porphyrins in the meso-meso linked Zn(II) porphyrin array, 1, 2, 3, 6, 12, and 24 (Z1A, Z2A, Z3A, Z6A, Z12A, and Z24A). The intramolecular singlet-singlet EET processes have been examined by means of the steady-state and time-resolved spectroscopic techniques. The steady-state fluorescence comes only from the acceptor moiety in Z1A-Z12A, indicating nearly the quantitative EET. In Z24A that has a molecular length of ca. 217 A, the fluorescence comes largely from the acceptor moiety but partly from the long donor array, indicating that the intramolecular EET is not quantitative. The transient absorption spectroscopy has provided the EET rates in real time scale: (2.5 ps)(-1) for Z1A, (3.3 ps)(-1) for Z2A, (5.5 ps)(-1) for Z3A, (21 ps)(-1) for Z6A, (63 ps)(-1) for Z12A, and (108 ps)(-1) for Z24A. These results have been well explained by a revised Förster equation (Sumi formula), which takes into account an exciton extending coherently over several porphyrin pigments in the donor array, whose length is not much shorter than the average donor-acceptor distance. Advantages of such strongly coupled porphyrin arrays in light harvesting and transmission are emphasized in terms of fast EET and a large absorption cross-section for incident light.
鉴于具有大的吸收截面和快速的激发能量转移(EET),电子耦合卟啉阵列适用于人工光捕获天线。沿着这条路线,已经合成了一种人工能量转移模型系统,它由一个供能的中位-中位连接的Zn(II)卟啉阵列和一个通过1,4-亚苯基间隔基连接的受能的5,15-双苯基乙炔基化Zn(II)卟啉组成。这包括中位-中位连接的Zn(II)卟啉阵列中卟啉数量不断增加,分别为1、2、3、6、12和24个(Z1A、Z2A、Z3A、Z6A、Z12A和Z24A)。已经通过稳态和时间分辨光谱技术研究了分子内单重态-单重态EET过程。稳态荧光仅来自Z1A-Z12A中的受体部分,表明几乎是定量的EET。在分子长度约为217 Å的Z24A中,荧光很大程度上来自受体部分,但部分来自长的供体阵列,这表明分子内EET不是定量的。瞬态吸收光谱实时提供了EET速率:Z1A为(2.5 ps)(-1),Z2A为(3.3 ps)(-1),Z3A为(5.5 ps)(-1),Z6A为(21 ps)(-1),Z12A为(63 ps)(-1),Z24A为(108 ps)(-1)。这些结果已通过修正的Förster方程(Sumi公式)得到很好的解释,该方程考虑了激子在供体阵列中几个卟啉色素上的相干扩展,其长度不比平均供体-受体距离短太多。从快速EET和对入射光的大吸收截面方面强调了这种强耦合卟啉阵列在光捕获和传输中的优势。