Chen Xue-Bo, Fang Wei-Hai, Fang De-Cai
Department of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.
J Am Chem Soc. 2003 Aug 13;125(32):9689-98. doi: 10.1021/ja029005h.
The potential energy surfaces for CH(3)CONH(2) dissociation into CH(3) + CONH(2), CH(3)CO + NH(2), CH(3)CN + H(2)O, and CH(3)NH(2) + CO in the ground and lowest triplet states have been mapped with DFT, MP2, and CASSCF methods with the cc-pVDZ and cc-pVTZ basis sets, while the S(1) potential energy surfaces for these reactions were determined by the CASSCF/cc-pVDZ optimizations followed by CASSCF/MRSDCI single-point calculations. The reaction pathways leading to different photoproducts are characterized on the basis of the computed potential energy surfaces and surface crossing points. A comparison of the reactivity among HCONH(2), CH(3)CONH(2), and CH(3)CONHCH(3) has been made, which provides some new insights into the mechanism of the ultraviolet photodissociation of small amides.