Mironov Vladimir S, Chibotaru Liviu F, Ceulemans Arnout
Institute of Crystallography Russian Academy of Sciences, Leninskii prosp. 59, 117333 Moscow, Russian Federation.
J Am Chem Soc. 2003 Aug 13;125(32):9750-60. doi: 10.1021/ja029518o.
Unusual spin coupling between Mo(III) and Mn(II) cyano-bridged ions in bimetallic molecular magnets based on the Mo(III)(CN)(7) heptacyanometalate is analyzed in terms of the superexchange theory. Due to the orbital degeneracy and strong spin-orbit coupling on Mo(III), the ground state of the pentagonal-bipyramidal Mo(III)(CN)(7) complex corresponds to an anisotropic Kramers doublet. Using a specially adapted kinetic exchange model we have shown that the Mo(III)-CN-Mn(II) superexchange interaction is extremely anisotropic: it is described by an Ising-like spin Hamiltonian JS(z)(Mo) S(z)(Mn) for the apical pairs and by the J(z)S(z)(Mo) S(z)(Mn) + J(xy)(Sx(Mo) Sx(Mn) + Sy(Mo) Sy(Mn)) spin Hamiltonian for the equatorial pairs (in the latter case J(z) and J(xy) can have opposite signs). This anisotropy resulted from an interplay of several Ising-like (Sz(Mo) Sz(Mn)) and isotropic (S(Mo)S(Mn)) ferro- and antiferromagnetic contributions originating from metal-to-metal electron transfers through the pi and sigma orbitals of the cyano bridges. The Mo(III)-CN-Mn(II) exchange anisotropy is distinct from the anisotropy of the g-tensor of Mo(III)(CN)(7); moreover, there is no correlation between the exchange anisotropy and g-tensor anisotropy. We indicate that highly anisotropic spin-spin couplings (such as the Ising-like JS(z)(Mo) S(z)(Mn)) combined with large exchange parameters represent a very important source of the global magnetic anisotropy of polyatomic molecular magnetic clusters. Since the total spin of such clusters is no longer a good quantum number, the spin spectrum pattern can differ considerably from the conventional scheme described by the zero-field splitting of the isotropic spin of the ground state. As a result, the spin reorientation barrier of the magnetic cluster may be considerably larger. This finding opens a new way in the strategy of designing single-molecule magnets (SMM) with unusually high blocking temperatures. The use of orbitally degenerate complexes with a strong spin-orbit coupling (such as Mo(III)(CN)(7) or its 5d analogues) as building blocks is therefore very promising for these purposes.
基于七氰合钼(III)酸盐Mo(III)(CN)(7)的双金属分子磁体中,Mo(III)和Mn(II)氰基桥连离子之间异常的自旋耦合,根据超交换理论进行了分析。由于Mo(III)上的轨道简并和强自旋 - 轨道耦合,五角双锥Mo(III)(CN)(7)配合物的基态对应于一个各向异性的克莱默斯双重态。使用一个特别适配的动力学交换模型,我们表明Mo(III)-CN-Mn(II)超交换相互作用极其各向异性:对于顶端对,它由类伊辛自旋哈密顿量JS(z)(Mo) S(z)(Mn)描述,对于赤道对,由J(z)S(z)(Mo) S(z)(Mn) + J(xy)(Sx(Mo) Sx(Mn) + Sy(Mo) Sy(Mn))自旋哈密顿量描述(在后一种情况下,J(z)和J(xy)可能具有相反的符号)。这种各向异性源于几种类伊辛(Sz(Mo) Sz(Mn))和各向同性(S(Mo)S(Mn))的铁磁和反铁磁贡献的相互作用,这些贡献源自通过氰基桥的π和σ轨道的金属 - 金属电子转移。Mo(III)-CN-Mn(II)交换各向异性不同于Mo(III)(CN)(7)的g张量各向异性;此外,交换各向异性和g张量各向异性之间没有相关性。我们指出,高度各向异性的自旋 - 自旋耦合(如类伊辛的JS(z)(Mo) S(z)(Mn))与大的交换参数相结合,是多原子分子磁簇全局磁各向异性的一个非常重要的来源。由于此类簇的总自旋不再是一个好的量子数,自旋谱模式可能与由基态各向同性自旋的零场分裂所描述的传统方案有很大不同。因此,磁簇的自旋重取向势垒可能会大得多。这一发现为设计具有异常高阻塞温度的单分子磁体(SMM)的策略开辟了一条新途径。因此,使用具有强自旋 - 轨道耦合的轨道简并配合物(如Mo(III)(CN)(7)或其5d类似物)作为构建单元对于这些目的非常有前景。