Korolev Dmitry, Balakin Konstantin V, Nikolsky Yuri, Kirillov Eugene, Ivanenkov Yan A, Savchuk Nikolay P, Ivashchenko Andrey A, Nikolskaya Tatiana
GeneGo, Inc., 227 South Berrien Street, New Buffalo, MI 49117, USA.
J Med Chem. 2003 Aug 14;46(17):3631-43. doi: 10.1021/jm030102a.
We developed a computational algorithm for evaluating the possibility of cytochrome P450-mediated metabolic transformations that xenobiotics molecules undergo in the human body. First, we compiled a database of known human cytochrome P-450 substrates, products, and nonsubstrates for 38 enzyme-specific groups (total of 2200 compounds). Second, we determined the cytochrome-mediated metabolic reactions most typical for each group and examined the substrates and products of these reactions. To assess the probability of P450 transformations of novel compounds, we built a nonlinear quantitative structure-metabolism relationships (QSMR) model based on Kohonen self-organizing maps (SOM). This neural network QSMR model incorporated a predefined set of physicochemical descriptors encoding the key molecular properties that define the metabolic fate of individual molecules. Isozyme-specific groups of substrate molecules were visualized, thus facilitating prediction of tissue-specific metabolism. The developed algorithm can be used in early stages of drug discovery as an efficient tool for the assessment of human metabolism and toxicity of novel compounds in designing discovery libraries and in lead optimization.
我们开发了一种计算算法,用于评估异源生物分子在人体中发生细胞色素P450介导的代谢转化的可能性。首先,我们为38个酶特异性组(共2200种化合物)编制了一个已知人类细胞色素P - 450底物、产物和非底物的数据库。其次,我们确定了每组最典型的细胞色素介导的代谢反应,并研究了这些反应的底物和产物。为了评估新型化合物发生P450转化的概率,我们基于Kohonen自组织映射(SOM)建立了一个非线性定量结构 - 代谢关系(QSMR)模型。这个神经网络QSMR模型纳入了一组预定义的物理化学描述符,这些描述符编码了定义单个分子代谢命运的关键分子特性。底物分子的同工酶特异性组被可视化,从而便于预测组织特异性代谢。所开发的算法可在药物发现的早期阶段用作一种有效工具,用于在设计发现文库和先导优化过程中评估新型化合物的人体代谢和毒性。