Suppr超能文献

嗜热古菌柯达栖热球菌KOD1中参与新型几丁质分解途径的外-β-D-氨基葡萄糖苷酶的特性分析

Characterization of an exo-beta-D-glucosaminidase involved in a novel chitinolytic pathway from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.

作者信息

Tanaka Takeshi, Fukui Toshiaki, Atomi Haruyuki, Imanaka Tadayuki

机构信息

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501, Japan.

出版信息

J Bacteriol. 2003 Sep;185(17):5175-81. doi: 10.1128/JB.185.17.5175-5181.2003.

Abstract

We previously clarified that the chitinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 produces diacetylchitobiose (GlcNAc(2)) as an end product from chitin. Here we sought to identify enzymes in T. kodakaraensis that were involved in the further degradation of GlcNAc(2). Through a search of the T. kodakaraensis genome, one candidate gene identified as a putative beta-glycosyl hydrolase was found in the near vicinity of the chitinase gene. The primary structure of the candidate protein was homologous to the beta-galactosidases in family 35 of glycosyl hydrolases at the N-terminal region, whereas the central region was homologous to beta-galactosidases in family 42. The purified protein from recombinant Escherichia coli clearly showed an exo-beta-D-glucosaminidase (GlcNase) activity but not beta-galactosidase activity. This GlcNase (GlmA(Tk)), a homodimer of 90-kDa subunits, exhibited highest activity toward reduced chitobiose at pH 6.0 and 80 degrees C and specifically cleaved the nonreducing terminal glycosidic bond of chitooligosaccharides. The GlcNase activity was also detected in T. kodakaraensis cells, and the expression of GlmA(Tk) was induced by GlcNAc(2) and chitin, strongly suggesting that GlmA(Tk) is involved in chitin catabolism in T. kodakaraensis. These results suggest that T. kodakaraensis, unlike other organisms, possesses a novel chitinolytic pathway where GlcNAc(2) from chitin is first deacetylated and successively hydrolyzed to glucosamine. This is the first report that reveals the primary structure of GlcNase not only from an archaeon but also from any organism.

摘要

我们之前阐明,嗜热古菌柯达嗜热栖热菌(Thermococcus kodakaraensis)KOD1产生的几丁质酶以二乙酰壳二糖(GlcNAc(2))作为几丁质的终产物。在此,我们试图鉴定柯达嗜热栖热菌中参与GlcNAc(2)进一步降解的酶。通过搜索柯达嗜热栖热菌的基因组,在几丁质酶基因附近发现了一个被鉴定为推定的β-糖基水解酶的候选基因。候选蛋白的一级结构在N端区域与糖基水解酶家族35中的β-半乳糖苷酶同源,而中间区域与家族42中的β-半乳糖苷酶同源。从重组大肠杆菌中纯化得到的蛋白明显表现出外切β-D-氨基葡萄糖苷酶(GlcNase)活性,但没有β-半乳糖苷酶活性。这种GlcNase(GlmA(Tk))是由90-kDa亚基组成的同型二聚体,在pH 6.0和80℃时对还原型壳二糖表现出最高活性,并特异性切割壳寡糖非还原末端的糖苷键。在柯达嗜热栖热菌细胞中也检测到了GlcNase活性,并且GlcNAc(2)和几丁质可诱导GlmA(Tk)的表达,这强烈表明GlmA(Tk)参与了柯达嗜热栖热菌中的几丁质分解代谢。这些结果表明,与其他生物不同,柯达嗜热栖热菌拥有一条新的几丁质分解途径,其中几丁质中的GlcNAc(2)首先脱乙酰化,然后依次水解为氨基葡萄糖。这是首次报道不仅揭示了来自古菌,而且来自任何生物的GlcNase的一级结构。

相似文献

3
Characterization of a novel glucosamine-6-phosphate deaminase from a hyperthermophilic archaeon.
J Bacteriol. 2005 Oct;187(20):7038-44. doi: 10.1128/JB.187.20.7038-7044.2005.
8
Multiple components and induction mechanism of the chitinolytic system of the hyperthermophilic archaeon Thermococcus chitonophagus.
Appl Microbiol Biotechnol. 2004 Nov;65(6):694-702. doi: 10.1007/s00253-004-1640-4. Epub 2004 Aug 21.
9
Active subtilisin-like protease from a hyperthermophilic archaeon in a form with a putative prosequence.
Appl Environ Microbiol. 2001 Jun;67(6):2445-52. doi: 10.1128/AEM.67.6.2445-2452.2001.
10
A Structurally Novel Chitinase from the Chitin-Degrading Hyperthermophilic Archaeon Thermococcus chitonophagus.
Appl Environ Microbiol. 2016 May 31;82(12):3554-3562. doi: 10.1128/AEM.00319-16. Print 2016 Jun 15.

引用本文的文献

2
Identifying and as sustainable organisms to bioconvert glucosamine into valuable biomass.
Biotechnol Notes. 2024 Jan 14;5:13-22. doi: 10.1016/j.biotno.2024.01.003. eCollection 2024.
3
A novel thermophilic chitinase directly mined from the marine metagenome using the deep learning tool Preoptem.
Bioresour Bioprocess. 2022 May 16;9(1):54. doi: 10.1186/s40643-022-00543-1.
6
A bottom-up approach towards a bacterial consortium for the biotechnological conversion of chitin to L-lysine.
Appl Microbiol Biotechnol. 2021 Feb;105(4):1547-1561. doi: 10.1007/s00253-021-11112-5. Epub 2021 Feb 1.
7
Preparation of Defined Chitosan Oligosaccharides Using Chitin Deacetylases.
Int J Mol Sci. 2020 Oct 22;21(21):7835. doi: 10.3390/ijms21217835.
8
Thermophilic Chitinases: Structural, Functional and Engineering Attributes for Industrial Applications.
Appl Biochem Biotechnol. 2021 Jan;193(1):142-164. doi: 10.1007/s12010-020-03416-5. Epub 2020 Aug 22.
9
10
Microbial chitinases: properties, current state and biotechnological applications.
World J Microbiol Biotechnol. 2019 Sep 6;35(9):144. doi: 10.1007/s11274-019-2721-y.

本文引用的文献

1
Purification and Characterization of Exo-beta-d-Glucosaminidase from a Cellulolytic Fungus, Trichoderma reesei PC-3-7.
Appl Environ Microbiol. 1998 Mar;64(3):890-5. doi: 10.1128/AEM.64.3.890-895.1998.
5
Molecular and biochemical analysis of two beta-galactosidases from Bifidobacterium infantis HL96.
Appl Environ Microbiol. 2001 Sep;67(9):4256-63. doi: 10.1128/AEM.67.9.4256-4263.2001.
7
Characterization of beta-glycosylhydrolases from Pyrococcus furiosus.
Methods Enzymol. 2001;330:329-46. doi: 10.1016/s0076-6879(01)30386-5.
10
Genome sequence of Halobacterium species NRC-1.
Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12176-81. doi: 10.1073/pnas.190337797.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验