Kim Sang Chan, Cho Min Kyung, Kim Sang Geon
College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Sillim-dong, Kwanak-gu, Seoul 151-742, South Korea.
Toxicol Lett. 2003 Oct 15;144(3):325-36. doi: 10.1016/s0378-4274(03)00233-9.
Cadmium (Cd), which accumulates primarily in the liver and the kidney, induces apoptosis and also causes necrotic cell death in certain pathophysiologic situations. Previously, we have shown that Cd activated mitogen-activated protein kinases and that sulfur amino acid deficiency potentiated Cd-induced cytotoxicity via activation of mitogen-activated protein kinases. In the present study, we established the mechanistic basis of apoptotic and non-apoptotic cell death induced by Cd in H4IIE cells a rat-derived hepatocyte cell line. Cd at 0.3-10 microM decreased viability of cells in a concentration-dependent manner. Cd-induced cytotoxicity was enhanced by pretreatment with buthionine sulfoximine (BSO). Cd at 0.3 microM induced translocation of Bad to mitochondria, decreased the level of mitochondrial BcL(XL) with the release of cytochrome c, and induced procaspase-9 activation and poly(ADP-ribose) polymerase (PARP) cleavage. Sulfhydryl deficiency by BSO, however, blocked PARP cleavage in spite of the decrease in procaspase-9. Cytochrome c release, procaspase-9 activation and PARP cleavage were all increased by 1 microM Cd irrespective of BSO pretreatment. We also used H(2)O(2) (10-100 microM) as a source of oxidative stress. Cd (0.3-1 microM) + H(2)O(2) (70 microM) resulted in greater extents of cytochrome c release, procaspase-9 activation and PARP cleavage in H4IIE cells than Cd alone. Flow cytometric analysis confirmed apoptotic and non-apoptotic cell death by Cd depending on cellular glutathione (GSH) content. These results provide evidence that Cd at the physiologically obtainable concentration causes non-apoptotic cell death under the condition of sufhydryl deficiency, whereas Cd at the micromolar level induces apoptosis. The cell death mechanism involves cytochrome c release from mitochondria and decrease in the level of procaspase-9, but not PARP cleavage, implying that alterations in cellular sulfhydryls may be the major determining factor for the path of cell death in response to low level of Cd.
镉(Cd)主要蓄积在肝脏和肾脏中,可诱导细胞凋亡,并且在某些病理生理情况下还会导致坏死性细胞死亡。此前,我们已经表明,镉可激活丝裂原活化蛋白激酶,并且硫氨基酸缺乏会通过激活丝裂原活化蛋白激酶来增强镉诱导的细胞毒性。在本研究中,我们确立了镉在大鼠来源的肝细胞系H4IIE细胞中诱导凋亡和非凋亡性细胞死亡的机制基础。0.3 - 10微摩尔的镉以浓度依赖的方式降低细胞活力。用丁硫氨酸亚砜胺(BSO)预处理可增强镉诱导的细胞毒性。0.3微摩尔的镉诱导Bad转位至线粒体,降低线粒体BcL(XL)水平并释放细胞色素c,还诱导procaspase-9激活和聚(ADP-核糖)聚合酶(PARP)裂解。然而,尽管procaspase-9减少,但BSO导致的巯基缺乏却阻断了PARP裂解。无论是否用BSO预处理,1微摩尔的镉都会增加细胞色素c释放、procaspase-9激活和PARP裂解。我们还使用过氧化氢(H₂O₂,10 - 100微摩尔)作为氧化应激源。与单独的镉相比,镉(0.3 - 1微摩尔)+过氧化氢(70微摩尔)在H4IIE细胞中导致更大程度的细胞色素c释放、procaspase-9激活和PARP裂解。流式细胞术分析证实,镉根据细胞内谷胱甘肽(GSH)含量导致凋亡和非凋亡性细胞死亡。这些结果提供了证据,即在生理可获得浓度下,镉在巯基缺乏的条件下会导致非凋亡性细胞死亡,而微摩尔水平的镉会诱导凋亡起。细胞死亡机制涉及细胞色素c从线粒体释放以及procaspase-9水平降低,但不涉及PARP裂解,这意味着细胞巯基的改变可能是低水平镉诱导细胞死亡途径的主要决定因素。