Qian Tiezheng, Wang Xiao-Ping, Sheng Ping
Department of Physics and Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jul;68(1 Pt 2):016306. doi: 10.1103/PhysRevE.68.016306. Epub 2003 Jul 17.
From extensive molecular dynamics simulations on immiscible two-phase flows, we find the relative slipping between the fluids and the solid wall everywhere to follow the generalized Navier boundary condition, in which the amount of slipping is proportional to the sum of tangential viscous stress and the uncompensated Young stress. The latter arises from the deviation of the fluid-fluid interface from its static configuration. We give a continuum formulation of the immiscible flow hydrodynamics, comprising the generalized Navier boundary condition, the Navier-Stokes equation, and the Cahn-Hilliard interfacial free energy. Our hydrodynamic model yields interfacial and velocity profiles matching those from the molecular dynamics simulations at the molecular-scale vicinity of the contact line. In particular, the behavior at high capillary numbers, leading to the breakup of the fluid-fluid interface, is accurately predicted.
通过对不混溶两相流进行广泛的分子动力学模拟,我们发现流体与固体壁面各处的相对滑移均遵循广义纳维边界条件,其中滑移量与切向粘性应力和未补偿的杨氏应力之和成正比。后者源于流体 - 流体界面与其静态构型的偏差。我们给出了不混溶流动流体动力学的连续介质表述,包括广义纳维边界条件、纳维 - 斯托克斯方程和相场Cahn - Hilliard界面自由能。我们的流体动力学模型在接触线分子尺度附近产生的界面和速度分布与分子动力学模拟结果相匹配。特别是,对导致流体 - 流体界面破裂的高毛细管数下的行为进行了准确预测。