Contreras J Guillermo, Madariaga Sandra T
Facultad de Ciencias Quimicas, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile.
Bioorg Chem. 2003 Oct;31(5):367-77. doi: 10.1016/s0045-2068(03)00083-x.
Watson-Crick optimized geometries and the energies of base pairing for the natural pairs of nucleic bases: adenine-thymine (AT) and guanine-cytosine (GC) have been recalculated by ab initio methods in order to compare results to those found for the non-natural azaadenine-thymine (AAT) and azaguanine-cytosine (AGC) pairs. Geometry optimizations carried out at the HF/6-31G** level and energies obtained at MP2/6-31G**, show that AAT and AGC have hydrogen bonding patterns similar to the natural AT and GC and that the interaction energies (DeltaH0int) for the former are ca. 7 kcal/mol more stable than the latter. Accordingly, the pairs based on azapurines would be favored with respect to the natural pairs. Some possible explanations why nature does not use extensively the azabases in base pairing are given.
已通过从头算方法重新计算了天然核酸碱基对(腺嘌呤 - 胸腺嘧啶(AT)和鸟嘌呤 - 胞嘧啶(GC))的沃森 - 克里克优化几何结构和碱基配对能量,以便将结果与非天然氮杂腺嘌呤 - 胸腺嘧啶(AAT)和氮杂鸟嘌呤 - 胞嘧啶(AGC)对的结果进行比较。在HF/6 - 31G水平上进行的几何结构优化以及在MP2/6 - 31G水平上获得的能量表明,AAT和AGC具有与天然AT和GC相似的氢键模式,并且前者的相互作用能(ΔH0int)比后者大约稳定7千卡/摩尔。因此,基于氮杂嘌呤的碱基对比天然碱基对更具优势。文中给出了一些关于自然界为何不在碱基配对中广泛使用氮杂碱基的可能解释。