van Smaalen Sander, Palatinus Lukás, Schneider Martin
Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany.
Acta Crystallogr A. 2003 Sep;59(Pt 5):459-69. doi: 10.1107/S010876730301434X. Epub 2003 Aug 29.
One of the applications of the maximum-entropy method (MEM) in crystallography is the reconstruction of the electron density from phased structure factors. Here the application of the MEM to incommensurately modulated crystals and incommensurate composite crystals is considered. The MEM is computed directly in superspace, where the electron density in the (3+d)-dimensional unit cell (d > 0) is determined from the scattering data of aperiodic crystals. Periodic crystals (d = 0) are treated as a special case of the general formalism. The use of symmetry in the MEM is discussed and an efficient algorithm is proposed for handling crystal symmetry. The method has been implemented into a computer program BayMEM and applications are presented to the electron density of the periodic crystal NaV(2)O(5) and the electron density of the incommensurate composite crystal (LaS)(1.14)NbS(2). The MEM in superspace is shown to provide a model-independent estimate of the shapes of the modulation functions of incommensurate crystals. The discrete character of the electron density is found to be the major source of error, limiting the accuracy of the reconstructed modulation functions to approximately 10% of the sizes of the pixels. MaxEnt optimization using the Cambridge and Sakata-Sato algorithms are compared. The Cambridge algorithm is found to perform better than the Sakata-Sato algorithm, being faster, always reaching convergence, and leading to more reliable density maps. Nevertheless, the Sakata-Sato algorithm leads to similar density maps, even in cases where it does not reach complete convergence.
最大熵方法(MEM)在晶体学中的应用之一是根据相位结构因子重建电子密度。本文考虑了MEM在非公度调制晶体和非公度复合晶体中的应用。MEM直接在超空间中计算,其中(3 + d)维晶胞(d > 0)中的电子密度由非周期晶体的散射数据确定。周期晶体(d = 0)被视为一般形式的特殊情况。讨论了MEM中对称性的使用,并提出了一种处理晶体对称性的有效算法。该方法已被实现为计算机程序BayMEM,并应用于周期晶体NaV₂O₅的电子密度和非公度复合晶体(LaS)₁.₁₄NbS₂的电子密度。超空间中的MEM被证明可以提供与模型无关的非公度晶体调制函数形状估计。发现电子密度的离散特性是误差的主要来源,将重建调制函数的精度限制在像素大小的约10%。比较了使用剑桥算法和坂田 - 佐藤算法的最大熵优化。发现剑桥算法比坂田 - 佐藤算法表现更好,速度更快,总能达到收敛,并能得到更可靠的密度图。然而,即使在坂田 - 佐藤算法未完全收敛的情况下,它也能得到类似的密度图。