Tsuda Ichiro, Umemura Toshiya
Department of Mathematics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.
Chaos. 2003 Sep;13(3):937-46. doi: 10.1063/1.1599131.
We report the existence of chaotic itinerancy in a coupled Milnor attractor system. The attractor ruins consist of tori or local chaos generated from the original Milnor attractors. The chaotic behavior exhibited by a single orbit can be considered a "nonstationary" state, due to the extremely slow convergence of the Lyapunov exponents, but the behavior averaged over randomly chosen initial conditions is consistent with the limit theorem. We present as a possibly new indication of chaotic itinerancy the presence of slow decay of large fluctuations of the largest Lyapunov exponent.
我们报告了耦合米尔诺吸引子系统中混沌游走的存在。吸引子废墟由原始米尔诺吸引子产生的环面或局部混沌组成。由于李雅普诺夫指数收敛极慢,单个轨道所表现出的混沌行为可被视为一种“非平稳”状态,但在随机选择的初始条件下平均后的行为与极限定理一致。我们提出,最大李雅普诺夫指数的大幅波动存在缓慢衰减,这可能是混沌游走的一个新迹象。