Suppr超能文献

利用实时光散射数据估算渗入的和室内产生的颗粒物对室内空气的贡献。

Use of real-time light scattering data to estimate the contribution of infiltrated and indoor-generated particles to indoor air.

作者信息

Allen Ryan, Larson Timothy, Sheppard Lianne, Wallace Lance, Liu L J Sally

机构信息

Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98195, USA.

出版信息

Environ Sci Technol. 2003 Aug 15;37(16):3484-92. doi: 10.1021/es021007e.

Abstract

The contribution of outdoor particulate matter (PM) to residential indoor concentrations is currently not well understood. Most importantly, separating indoor PM into indoor- and outdoor-generated components will greatly enhance our knowledge of the outdoor contribution to total indoor and personal PM exposures. This paper examines continuous light scattering data at 44 residences in Seattle, WA. A newly adapted recursive model was used to model outdoor-originated PM entering indoor environments. After censoring the indoor time-series to remove the influence of indoor sources, nonlinear regression was used to estimate particle penetration (P, 0.94 +/- 0.10), air exchange rate (a, 0.54 +/- 0.60 h(-1)), particle decay rate (k, 0.20 +/- 0.16 h(-1)), and particle infiltration (F(inf), 0.65 +/- 0.21) for each of the 44 residences. All of these parameters showed seasonal differences. The F(inf) estimates agree well with those estimated from the sulfur-tracer method (R2 = 0.78). The F(inf) estimates also showed robust and expected behavior when compared against known influencing factors. Among our study residences, outdoor-generated particles accounted for an average of 79 +/- 17% of the indoor PM concentration, with a range of 40-100% at individual residences. Although estimates of P, a, and k were dependent on the modeling technique and constraints, we showed that a recursive mass balance model combined with our censoring algorithms can be used to attribute indoor PM into its outdoor and indoor components and to estimate an average P, a, k, and F(inf), for each residence.

摘要

目前,室外颗粒物(PM)对住宅室内浓度的贡献尚不清楚。最重要的是,将室内PM分为室内产生和室外产生的成分,将极大地增强我们对室外对室内和个人PM总暴露贡献的了解。本文研究了华盛顿州西雅图44处住宅的连续光散射数据。使用一种新改编的递归模型来模拟进入室内环境的源自室外的PM。在对室内时间序列进行审查以消除室内源的影响后,使用非线性回归来估计44处住宅中每一处的颗粒穿透率(P,0.94±0.10)、空气交换率(a,0.54±0.60 h⁻¹)、颗粒衰减率(k,0.20±0.16 h⁻¹)和颗粒渗透率(F(inf),0.65±0.21)。所有这些参数都显示出季节性差异。F(inf)估计值与通过硫示踪法估计的值非常吻合(R² = 0.78)。与已知影响因素相比,F(inf)估计值也显示出稳健且符合预期的行为。在我们的研究住宅中,室外产生的颗粒平均占室内PM浓度的79±17%,个别住宅的范围为40 - 100%。尽管P、a和k的估计值取决于建模技术和约束条件,但我们表明,递归质量平衡模型与我们的审查算法相结合,可用于将室内PM分为室外和室内成分,并估计每处住宅的平均P、a、k和F(inf)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验