Suppr超能文献

用于图像压缩和特征保留的小波分解优化

Optimization of wavelet decomposition for image compression and feature preservation.

作者信息

Lo Shih-Chung B, Li Huai, Freedman Matthew T

机构信息

Center of Imaging Science and Information Systems, Radiology Department, Georgetown University Medical Center, 2115 Wisconsin Avenue. N.W., Suite 603, Washington, D.C. 20007, USA.

出版信息

IEEE Trans Med Imaging. 2003 Sep;22(9):1141-51. doi: 10.1109/TMI.2003.816953.

Abstract

A neural-network-based framework has been developed to search for an optimal wavelet kernel that can be used for a specific image processing task. In this paper, a linear convolution neural network was employed to seek a wavelet that minimizes errors and maximizes compression efficiency for an image or a defined image pattern such as microcalcifications in mammograms and bone in computed tomography (CT) head images. We have used this method to evaluate the performance of tap-4 wavelets on mammograms, CTs, magnetic resonance images, and Lena images. We found that the Daubechies wavelet or those wavelets with similar filtering characteristics can produce the highest compression efficiency with the smallest mean-square-error for many image patterns including general image textures as well as microcalcifications in digital mammograms. However, the Haar wavelet produces the best results on sharp edges and low-noise smooth areas. We also found that a special wavelet whose low-pass filter coefficients are 0.32252136, 0.85258927, 1.38458542, and -0.14548269) produces the best preservation outcomes in all tested microcalcification features including the peak signal-to-noise ratio, the contrast and the figure of merit in the wavelet lossy compression scheme. Having analyzed the spectrum of the wavelet filters, we can find the compression outcomes and feature preservation characteristics as a function of wavelets. This newly developed optimization approach can be generalized to other image analysis applications where a wavelet decomposition is employed.

摘要

已开发出一种基于神经网络的框架,用于寻找可用于特定图像处理任务的最优小波核。在本文中,采用线性卷积神经网络来寻找一种小波,该小波能使图像或定义的图像模式(如乳腺X线摄影中的微钙化和计算机断层扫描(CT)头部图像中的骨骼)的误差最小化,并使压缩效率最大化。我们已使用此方法评估了tap - 4小波在乳腺X线摄影、CT、磁共振图像和Lena图像上的性能。我们发现,对于包括一般图像纹理以及数字乳腺X线摄影中的微钙化在内的许多图像模式,Daubechies小波或具有相似滤波特性的小波能够以最小的均方误差产生最高的压缩效率。然而,Haar小波在锐利边缘和低噪声平滑区域产生的结果最佳。我们还发现,一种特殊的小波(其低通滤波器系数为0.32252136、0.85258927、1.38458542和 - 0.14548269)在所有测试的微钙化特征(包括小波有损压缩方案中的峰值信噪比、对比度和品质因数)方面产生了最佳的保留效果。通过分析小波滤波器的频谱,我们可以找到作为小波函数的压缩结果和特征保留特性。这种新开发的优化方法可以推广到其他采用小波分解的图像分析应用中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验