Suppr超能文献

CXCR4与反向激动剂和弱部分激动剂的脂质双分子层模拟

Lipid bilayer simulations of CXCR4 with inverse agonists and weak partial agonists.

作者信息

Trent John O, Wang Zi-xuan, Murray James L, Shao Wenhai, Tamamura Hirokazu, Fujii Nobutaka, Peiper Stephen C

机构信息

J. G. Brown Modeling Facility, 323 Brown Cancer Center, Department of Medicine, University of Louisville, 529 S. Jackson Street, Louisville, KY 40202, USA.

出版信息

J Biol Chem. 2003 Nov 21;278(47):47136-44. doi: 10.1074/jbc.M307850200. Epub 2003 Sep 4.

Abstract

CXCR4 is a G protein-coupled receptor (GPCR) that has multiple critical functions in normal and pathologic physiology that include regulation of the metastatic behavior of mammary carcinoma, and utilization as a coreceptor for infection by T-tropic strains of human immunodeficiency virus-1. Molecular dynamic simulations of the rhodopsin-based homology model of CXCR4 were performed in a solvated lipid bilayer to reproduce the microenvironment of this integral membrane protein. The amino acids in CXCR4 necessary for interaction with an inverse agonist, T140, and a weak partial agonist, AMD3100, identified by alanine scanning mutants, were spatially consistent when computationally docked. Whereas T140 binds residues in extracellular domains and regions of the hydrophobic core proximal to the cell surface, amino acids in the central hydrophobic core are critical to binding of AMD3100. The physical localization of T140 binding to CXCR4 by biochemical analyses corroborated the molecular and computational approaches. The structural basis for the interaction of T140 and AMD3100 with CXCR4 confirms that the mechanisms used by these agents are different. This complementary utilization of molecular, physical, and computation analysis provides a powerful approach to elucidate GPCR conformation.

摘要

CXCR4是一种G蛋白偶联受体(GPCR),在正常和病理生理过程中具有多种关键功能,包括调节乳腺癌的转移行为,以及作为人类免疫缺陷病毒1型T嗜性毒株感染的共受体。在溶剂化脂质双层中对基于视紫红质的CXCR4同源模型进行了分子动力学模拟,以重现这种整合膜蛋白的微环境。通过丙氨酸扫描突变体鉴定出的与反向激动剂T140和弱部分激动剂AMD3100相互作用所必需的CXCR4中的氨基酸,在进行计算对接时在空间上是一致的。T140结合细胞外结构域中的残基以及靠近细胞表面的疏水核心区域,而中央疏水核心中的氨基酸对于AMD3100的结合至关重要。通过生化分析确定T140与CXCR4结合的物理定位,证实了分子和计算方法。T140和AMD3100与CXCR4相互作用的结构基础证实,这些药物所使用的机制是不同的。这种分子、物理和计算分析的互补应用提供了一种强大的方法来阐明GPCR的构象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验