Suppr超能文献

Computing with populations of monotonically tuned neurons.

作者信息

Guigon Emmanuel

机构信息

INSERM U483, Université Pierre et Marie Curie, 75005 Paris, France.

出版信息

Neural Comput. 2003 Sep;15(9):2115-27. doi: 10.1162/089976603322297313.

Abstract

The parametric variation in neuronal discharge according to the values of sensory or motor variables strongly influences the collective behavior of neuronal populations. A multitude of studies on the populations of broadly tuned neurons (e.g., cosine tuning) have led to such well-known computational principles as population coding, noise suppression, and line attractors. Much less is known about the properties of populations of monotonically tuned neurons. In this letter, we show that there exists an efficient weakly biased linear estimator for monotonic populations and that neural processing based on linear collective computation and least-square error learning in populations of intensity-coded neurons has specific generalization capacities.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验