Wilden P A, Kahn C R, Siddle K, White M F
Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
J Biol Chem. 1992 Aug 15;267(23):16660-8.
We have studied a series of insulin receptor molecules in which the 3 tyrosine residues which undergo autophosphorylation in the kinase domain of the beta-subunit (Tyr1158, Tyr1162, and Tyr1163) were replaced individually, in pairs, or all together with phenylalanine or serine by in vitro mutagenesis. A single-Phe replacement at each of these three positions reduced insulin-stimulated autophosphorylation of solubilized receptor by 45-60% of that observed with wild-type receptor. The double-Phe replacements showed a 60-70% reduction, and substitution of all 3 tyrosine residues with Phe or Ser reduced insulin-stimulated tyrosine autophosphorylation by greater than 80%. Phosphopeptide mapping each mutant revealed that all remaining tyrosine autophosphorylation sites were phosphorylated normally following insulin stimulation, and no new sites appeared. The single-Phe mutants showed insulin-stimulated kinase activity toward a synthetic peptide substrate of 50-75% when compared with wild-type receptor kinase activity. Insulin-stimulated kinase activity was further reduced in the double-Phe mutants and barely detectable in the triple-Phe mutants. In contrast to the wild-type receptor, all of the mutant receptor kinases showed a significant reduction in activation following in vitro insulin-stimulated autophosphorylation. When studied in intact Chinese hamster ovary cells, insulin-stimulated receptor autophosphorylation and tyrosine phosphorylation of the cellular substrate pp185 in the single-Phe and double-Phe mutants was progressively lower with increased tyrosine replacement and did not exceed the basal levels in the triple-Phe mutants. However, all the mutant receptors, including the triple-Phe mutant, retained the ability to undergo insulin-stimulated Ser and Thr phosphorylation. Thus, full activation of the insulin receptor tyrosine kinase is dependent on insulin-stimulated Tris phosphorylation of the kinase domain, and the level of autophosphorylation in the kinase domain provides a mechanism for modulating insulin receptor kinase activity following insulin stimulation. By contrast, insulin stimulation of receptor phosphorylation on Ser and Thr residues by cellular serine/threonine kinases can occur despite markedly reduced tyrosine autophosphorylation.
我们研究了一系列胰岛素受体分子,其中β亚基激酶结构域中发生自身磷酸化的3个酪氨酸残基(Tyr1158、Tyr1162和Tyr1163)通过体外诱变分别、成对或全部被苯丙氨酸或丝氨酸取代。在这三个位置中的每一个位置进行单个苯丙氨酸取代,使溶解受体的胰岛素刺激的自身磷酸化降低至野生型受体观察值的45%-60%。双苯丙氨酸取代显示降低了60%-70%,用苯丙氨酸或丝氨酸取代所有3个酪氨酸残基使胰岛素刺激的酪氨酸自身磷酸化降低超过80%。对每个突变体进行磷酸肽图谱分析表明,在胰岛素刺激后,所有剩余的酪氨酸自身磷酸化位点均正常磷酸化,且未出现新的位点。与野生型受体激酶活性相比,单个苯丙氨酸突变体对合成肽底物显示出50%-75%的胰岛素刺激激酶活性。双苯丙氨酸突变体中胰岛素刺激的激酶活性进一步降低,在三苯丙氨酸突变体中几乎检测不到。与野生型受体相反,所有突变体受体激酶在体外胰岛素刺激的自身磷酸化后活化均显著降低。当在完整的中国仓鼠卵巢细胞中进行研究时,单个苯丙氨酸和双苯丙氨酸突变体中胰岛素刺激的受体自身磷酸化和细胞底物pp185的酪氨酸磷酸化随着酪氨酸取代增加而逐渐降低,且在三苯丙氨酸突变体中未超过基础水平。然而,所有突变体受体,包括三苯丙氨酸突变体,都保留了进行胰岛素刺激的丝氨酸和苏氨酸磷酸化的能力。因此,胰岛素受体酪氨酸激酶的完全活化依赖于胰岛素刺激的激酶结构域的苏氨酸磷酸化,并且激酶结构域中的自身磷酸化水平提供了一种在胰岛素刺激后调节胰岛素受体激酶活性的机制。相比之下,尽管酪氨酸自身磷酸化明显降低,但细胞丝氨酸/苏氨酸激酶仍可发生胰岛素刺激的受体丝氨酸和苏氨酸残基的磷酸化。