Jagadeesh G, Deth R C
Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts.
J Pharmacol Exp Ther. 1992 Aug;262(2):775-83.
The modulatory influence of the protein kinase C (PKC) activator phorbol dibutyrate (pDBu) and the PKC inhibitor staurosporine on the binding of the antagonist rauwolscine and the agonist (-)-epinephrine to alpha-2 adrenergic receptors was studied in plasma membranes from bovine aorta. In control membranes [3H]rauwolscine binding exhibited high (KDH = 110 pM) and low (KDL = 2.4 nM) affinity components. The addition of 0.1 mM 5'-guanylylimidodiphosphate [Gpp(NH)p] reduced binding to a single component (KD = 1.3 nM) and the addition of 140 mM NaCl increased the proportion of high affinity sites from 7 to 15%, whereas the combination of both Gpp(NH)p and NaCl did not differ from values for NaCl alone. PDBu pretreatment had little effect on [3H]rauwolscine binding with the exception of a small increase in KD in the presence of Gpp(NH)p. Staurosporine pretreatment, however, eliminated the high-affinity component in the absence of Gpp(NH)p or NaCl and rendered Gpp(NH)p ineffective. NaCl was able to restore two components of [3H]rauwolscine binding to the same extent as in untreated membranes. Epinephrine displaced [3H]rauwolscine in a biphasic manner (KDH = 93 nM, KDL = 3.5 microM; %RH = 42). In untreated membranes Gpp(NH)p reduced epinephrine affinity, but did not alter the %RH. NaCl alone increased KDL and caused a partial decrease in %RH, whereas the combination of Gpp(NH)p and NaCl was required to produce a single, low-affinity state (KD = 11.9 microM). PDBu pretreatment reduced epinephrine affinity and blocked the effectiveness of Gpp(NH)p, but the action of NaCl was more pronounced than in untreated membranes.(ABSTRACT TRUNCATED AT 250 WORDS)