Szyperski T, Güntert P, Stone S R, Wüthrich K
Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule-Hönggerberg, Zürich, Switzerland.
J Mol Biol. 1992 Dec 20;228(4):1193-205. doi: 10.1016/0022-2836(92)90325-e.
The three-dimensional structure of the N-terminal 51-residue domain of recombinant hirudin in aqueous solution was determined by 1H nuclear magnetic resonance (NMR) spectroscopy, and the resulting high-quality solution structure was compared with corresponding structures obtained from studies with the intact, 65-residue polypeptide chain of hirudin. On the basis of 580 distance constraints derived from nuclear Overhauser effects and 109 dihedral angle constraints, a group of 20 conformers representing the solution structure of hirudin(1-51) was computed with the program DIANA and energy-minimized with a modified version of the program AMBER. Residues 3 to 30 and 37 to 48 form a well-defined molecular core with two antiparallel beta-sheets composed of residues 14 to 16 and 20 to 22, and 27 to 31 and 36 to 40, and three reverse turns at residues 8 to 11 (type II), 17 to 20 (type II') and 23 to 26 (type II). The average root-mean-square deviation of the individual NMR conformers relative to their mean co-ordinates is 0.38 A for the backbone atoms and 0.77 A for all heavy atoms of these residues. Increased structural disorder was found for the N-terminal dipeptide segment, the loop at residues 31 to 36, and the C-terminal tripeptide segment. The solution structure of hirudin(1-51) has the same molecular architecture as the corresponding polypeptide segment in natural hirudin and recombinant desulfatohirudin. It is also closely similar to the crystal structure of the N-terminal 51-residue segment of hirudin in a hirudin-thrombin complex, with root-mean-square deviations of the crystal structure relative to the mean solution structure of 0.61 A for the backbone atoms and 0.91 A for all heavy atoms of residues 3 to 30 and 37 to 48. Further coincidence is found for the loop formed by residues 31 to 36, which shows increased structural disorder in all available solution structures of hirudin, and of which residues 32 to 35 are not observable in the electron density map of the thrombin complex. Significant local structural differences between hirudin(1-51) in solution and hirudin in the crystalline thrombin complex were identified mainly for the N-terminal tripeptide segment and residues 17 to 21. These are further analyzed in an accompanying paper.
通过1H核磁共振(NMR)光谱法测定了重组水蛭素N端51个残基结构域在水溶液中的三维结构,并将所得的高质量溶液结构与水蛭素完整的65个残基多肽链研究中获得的相应结构进行了比较。基于从核Overhauser效应得出的580个距离约束和109个二面角约束,使用DIANA程序计算出一组代表水蛭素(1-51)溶液结构的20个构象体,并用AMBER程序的修改版进行能量最小化。残基3至30和37至48形成一个明确的分子核心,有两个反平行的β折叠片层,分别由残基14至16和20至22以及27至31和36至40组成,在残基8至11(II型)、17至20(II'型)和23至26(II型)处有三个反向转角。这些残基的主链原子相对于其平均坐标的单个NMR构象体的平均均方根偏差为0.38 Å,所有重原子的平均均方根偏差为0.77 Å。在N端二肽段、残基31至36处的环以及C端三肽段发现结构无序增加。水蛭素(1-51)的溶液结构与天然水蛭素和重组去硫酸水蛭素中的相应多肽段具有相同的分子结构。它也与水蛭素-凝血酶复合物中水蛭素N端51个残基段的晶体结构非常相似,对于残基3至30和37至48,晶体结构相对于平均溶液结构的均方根偏差为主链原子0.61 Å,所有重原子0.91 Å。在残基31至36形成的环中发现了进一步的一致性,该环在水蛭素的所有可用溶液结构中都显示出结构无序增加,并且在凝血酶复合物的电子密度图中残基32至35不可见。溶液中的水蛭素(1-51)与结晶凝血酶复合物中的水蛭素之间的显著局部结构差异主要在N端三肽段和残基17至21处被识别。这些将在随附的论文中进一步分析。