Scherübl H, Hescheler J, Schultz G, Kliemann D, Zink A, Ziegler R, Raue F
Pharmakologisches Institut der Freien Universität Berlin, Germany.
Cell Signal. 1992 Jan;4(1):77-85. doi: 10.1016/0898-6568(92)90009-w.
Somatostatin has recently been applied therapeutically for hypercalcitonemia in patients with calcitonin-producing tumours. Using calcitonin-secreting cells (C-cells) of the medullary thyroid carcinoma cell line rMTC 44-2, we investigated the inhibitory action of somatostatin on calcitonin release, cytosolic Ca2+ and Ca2+ channel currents. The Ca(2+)-induced rises of the cytosolic Ca2+ and calcitonin secretion were greatly inhibited by somatostatin or its stable analogue octreotide. The effects of somatostatin were pertussis toxin-sensitive. Under voltage clamp conditions, C-cells exhibited slowly inactivating Ca2+ channel currents. Bath application of 100 nM somatostatin reversibly reduced the Ca2+ channel current by about 30%. The Ca2+ channel current and its inhibition by somatostatin were not affected by intracellularly applied cyclic AMP. Moreover, pretreating the cells with pertussis toxin had no effect on the control Ca2+ channel currents but greatly abolished its inhibition by somatostatin. The data show that somatostatin suppresses the Ca(2+)-stimulated calcitonin secretion by inhibiting voltage-dependent Ca2+ channel currents and by lowering cytosolic Ca2+. These actions of somatostatin involve pertussis toxin-sensitive G-proteins and occur independently of changes in the cyclic AMP concentration.