Jhamandas J H, Harris K H
Department of Medicine (Neurology), University of Alberta, Edmonton, Canada.
Am J Physiol. 1992 Aug;263(2 Pt 2):R324-30. doi: 10.1152/ajpregu.1992.263.2.R324.
The pontine parabrachial nucleus (PBN) is a recipient of predominantly excitatory input from the nucleus of the solitary tract (NTS). The presence of glutamate-like immunoreactivity at these brain stem sites suggests a role for excitatory amino acids (EAAs) in neurotransmission within the projection. We utilized electrophysiological studies in vivo to examine the ability of specific EAA antagonists, applied locally, to alter glutamate (GLU)-induced and NTS-evoked excitation of PBN neurons. Nonselective EAA antagonist kynurenic acid (KYN), the selective N-methyl-D-aspartate (NMDA) antagonist DL-2-amino-5-phosphonovalerate (APV), and non-NMDA quinoxalinedione group of blockers 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6-nitro-7-sulfamobenzoquinoxaline-2,3-dione (NBQX) were applied by iontophoresis or micropressure ejection from multibarreled pipettes attached to the recording electrode. Extracellular recordings in urethan-anesthetized rats were obtained from 58 PBN neurons that displayed an excitatory response following electrical stimulation within the NTS. Poststimulus histogram data revealed that NTS-evoked excitation could be reversibly blocked by KYN, APV, and CNQX in 21/37 (57%), 11/21 (52%), and 10/19 cells (53%), respectively. Both NMDA and non-NMDA antagonists reversibly attenuated or blocked GLU-evoked excitation in 21 of 29 PBN neurons. These observations suggest a role for both NMDA and non-NMDA receptors in mediating the excitatory input from NTS to the PBN.