Jaruratanasirikul S, Cooper A D, Blaschke T F
Department of Medicine, Stanford University Medical Center, CA 94305-5113.
Drug Metab Dispos. 1992 May-Jun;20(3):379-82.
Debrisoquin undergoes oxidative metabolism to 4-hydroxydebrisoquin, catalyzed by cytochrome CYP2D1 in rats and CYP2D6 in humans. Cytochrome CYP2D6 also plays a major role in dextromethorphan O-demethylation. In preliminary studies in perfused Lewis rat livers, we observed a difference in repeat clearance experiments using debrisoquin, but not dextromethorphan. To determine whether this change in clearance with time was due to the accumulation of 4-hydroxydebrisoquin, we sequentially used a recirculating and nonrecirculating perfusion system in the same liver perfusion experiment. We also studied the kinetics of dextromethorphan O-demethylation in microsomes prepared from human and rat livers in the presence and absence of 4-hydroxydebrisoquin. Results from the perfused rat liver experiments showed a drop in clearance from 3.27 +/- 0.57 ml/min (clearance 1) to 1.61 +/- 0.27 ml/min (clearance 2) (p less than 0.05 vs. clearance 1) during recirculation, but clearance returned to 3.21 +/- 0.46 ml/min (clearance 3, no significance vs. clearance 1) after a 30-min period of liver perfusion using a nonrecirculating system. There was significant accumulation of 4-hydroxydebrisoquin in the liver perfusate during recirculation, and concentrations fell when the nonrecirculating system was used. In microsomal studies, 4-hydroxydebrisoquin competitively inhibited dextromethorphan metabolism in human microsomes was 600 microM. These data suggest that: (a) 4-hydroxydebrisoquin and/or other metabolites of debrisoquin have an inhibitory effect on CYP2D1 and CYP2D6; (b) the active site of human CYP2D6 has different substrate specificity than the rat isozyme (CYP2D1) and/or that the pathways of metabolism of dextromethorphan are different in the Lewis rat and not primarily dependent on the activity of CYP2D1.
异喹胍在大鼠体内经细胞色素CYP2D1催化、在人体内经细胞色素CYP2D6催化氧化代谢为4 - 羟基异喹胍。细胞色素CYP2D6在右美沙芬O - 去甲基化过程中也起主要作用。在灌注的Lewis大鼠肝脏的初步研究中,我们观察到使用异喹胍进行重复清除实验时有差异,但使用右美沙芬时没有差异。为了确定清除率随时间的这种变化是否是由于4 - 羟基异喹胍的积累所致,我们在同一肝脏灌注实验中依次使用了循环灌注系统和非循环灌注系统。我们还研究了在有和没有4 - 羟基异喹胍存在的情况下,人肝和大鼠肝微粒体中右美沙芬O - 去甲基化的动力学。灌注大鼠肝脏实验的结果显示,在循环过程中清除率从3.27±0.57 ml/min(清除率1)降至1.61±0.27 ml/min(清除率2)(与清除率1相比,p<0.05),但在使用非循环系统进行30分钟肝脏灌注后,清除率恢复到3.21±0.46 ml/min(清除率3,与清除率1无显著差异)。在循环过程中,肝脏灌注液中出现了4 - 羟基异喹胍的显著积累,而使用非循环系统时其浓度下降。在微粒体研究中,4 - 羟基异喹胍竞争性抑制人微粒体中右美沙芬代谢的浓度为600μM。这些数据表明:(a) 4 - 羟基异喹胍和/或异喹胍的其他代谢产物对CYP2D1和CYP2D6有抑制作用;(b) 人CYP2D6的活性位点与大鼠同工酶(CYP2D1)具有不同的底物特异性,和/或右美沙芬在Lewis大鼠中的代谢途径不同且不主要依赖于CYP2D1的活性。