Suppr超能文献

Metabolism of 2,6-dinitro[3-3H]toluene by human and rat liver microsomal and cytosolic fractions.

作者信息

Chapman D E, Michener S R, Powis G

机构信息

Department of Pharmacology, Mayo Clinic and Foundation, Rochester, MN 55905.

出版信息

Xenobiotica. 1992 Aug;22(8):1015-28. doi: 10.3109/00498259209049907.

Abstract
  1. 2,6-Dinitrotoluene (2,6-DNT) metabolism by human liver and male Fischer F344 rat liver subcellular fractions under aerobic (100% oxygen) and anaerobic (100% nitrogen) incubation conditions was examined. Under aerobic conditions the major 2,6-DNT metabolite formed by hepatic microsomes was 2,6-dinitrobenzyl alcohol (2,6-DNBalc); under anaerobic conditions 2-amino-6-nitrotoluene (2Am6NT) was the major metabolite. 2. Rates of 2,6-DNBalc formation by human and rat liver microsomes under aerobic conditions were 247 and 132 pmol/min per mg protein, respectively. Rates of 2Am6NT formation by human and rat liver microsomes under anaerobic conditions were 292 and 285 pmol/min per mg protein, respectively. Anaerobic reduction of 2,6-DNT to 2Am6NT by rat and human liver microsomes was inhibited by carbon monoxide and metyrapone, which indicates that microsomal metabolism of 2,6-DNT to 2Am6NT is mediated by cytochrome P-450. 3. Liver cytosolic fractions also metabolized 2,6-DNT to 2Am6NT under anaerobic conditions. Formation of 2Am6NT by human and rat liver cytosols was supported by hypoxanthine, NADPH and NADH. Allopurinol inhibited the hypoxanthine-supported anaerobic metabolism of 2,6-DNT by rat, but not human, liver cytosol. Dicumarol inhibited the NADPH-supported anaerobic metabolism of 2,6-DNT by human, but not rat, liver cytosol. These results indicate that xanthine oxidase contributes to the hypoxanthine-supported anaerobic metabolism of 2,6-DNT by human liver cytosol.
摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验