Suppr超能文献

小龙虾中间神经元放电模式形成的机制

THE MECHANISM OF DISCHARGE PATTERN FORMATION IN CRAYFISH INTERNEURONS.

作者信息

TAKEDA K, KENNEDY D

出版信息

J Gen Physiol. 1965 Jan;48(3):435-53. doi: 10.1085/jgp.48.3.435.

Abstract

Excitatory and inhibitory processes which result in the generation of output impulses were analyzed in single crayfish interneurons by using intracellular recording and membrane polarizing techniques. Individual spikes which are initiated orthodromically in axon branches summate temporally and spatially to generate a main axon spike; temporally dispersed branch spikes often pace repetitive discharge of the main axon. Hyperpolarizing IPSP's sometimes suppress axonal discharge to most of these inputs, but in other cases may interact selectively with some of them. The IPSP's reverse their polarity at a hyperpolarized level of membrane potential; they sometimes exhibit two discrete time courses indicating two different input sources. Outward direct current at the main axon near branches causes repetitive discharges which may last, with optimal current intensities, for 1 to 15 seconds. The relation of discharge frequency to current intensity is linear for an early spike interval, but above 100 to 200 impulses/sec. it begins to show saturation. In one unit the current-frequency curve exhibited two linear portions, suggesting the presence of two spike-generating sites in the axon. Current threshold measurements, using test stimuli of different durations, showed that both accommodation and "early" or "residual" refractoriness contribute to the determination of discharge rate at different frequencies.

摘要

运用细胞内记录和膜极化技术,对单个小龙虾中间神经元中导致输出冲动产生的兴奋和抑制过程进行了分析。在轴突分支中顺向起始的单个锋电位在时间和空间上进行总和,以产生一个主要的轴突锋电位;时间上分散的分支锋电位常常为主要轴突的重复放电提供节律。超极化抑制性突触后电位(IPSP)有时会抑制对大多数这些输入的轴突放电,但在其他情况下可能会与其中一些输入进行选择性相互作用。IPSP在膜电位超极化水平时会反转其极性;它们有时会呈现出两个离散的时间进程,表明存在两种不同的输入源。在靠近分支的主要轴突处施加外向直流电会导致重复放电,在最佳电流强度下,这种放电可能持续1至15秒。对于早期的锋电位间隔,放电频率与电流强度的关系是线性的,但在每秒100至200次冲动以上时,它开始显示出饱和现象。在一个单位中,电流-频率曲线呈现出两个线性部分,这表明轴突中存在两个锋电位产生位点。使用不同持续时间的测试刺激进行的电流阈值测量表明,适应和“早期”或“残余”不应期都有助于确定不同频率下的放电率。

相似文献

1
THE MECHANISM OF DISCHARGE PATTERN FORMATION IN CRAYFISH INTERNEURONS.
J Gen Physiol. 1965 Jan;48(3):435-53. doi: 10.1085/jgp.48.3.435.
2
SYNAPTIC ACTIVATION AND RECEPTIVE FIELDS IN CRAYFISH INTERNEURONS.
Comp Biochem Physiol. 1964 Dec;13:275-300. doi: 10.1016/0010-406x(64)90025-8.
3
Integrative synaptic mechanisms in the caudal ganglion of the crayfish.
J Gen Physiol. 1960 Jan;43(3):671-81. doi: 10.1085/jgp.43.3.671.
4
ADAPTATION IN STRETCH RECEPTOR NEURONS OF CRAYFISH.
Science. 1964 Nov 27;146(3648):1168-70. doi: 10.1126/science.146.3648.1168.
5
INTERNEURONS COMMANDING SWIMMERET MOVEMENTS IN THE CRAYFISH, PROCAMBARUS CLARKI (GIRARD).
Comp Biochem Physiol. 1964 Aug;12:509-25. doi: 10.1016/0010-406x(64)90153-7.
6
Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons.
J Gen Physiol. 1961 Nov;45(2):267-308. doi: 10.1085/jgp.45.2.267.
8
SOMA POTENTIALS AND MODES OF ACTIVATION OF CRAYFISH MOTONEURONS.
J Cell Comp Physiol. 1964 Oct;64:165-81. doi: 10.1002/jcp.1030640203.
9
Activity patterns of interneurons in the caudal ganglion of the crayfish.
J Gen Physiol. 1960 Jan;43(3):655-70. doi: 10.1085/jgp.43.3.655.
10
RESPONSE OF SPONTANEOUS UNITS IN CRAYFISH VENTRAL CORD TO DIRECT CURRENT.
Comp Biochem Physiol. 1964 Jul;12:311-30. doi: 10.1016/0010-406x(64)90062-3.

引用本文的文献

1
Synaptic Properties and Plasticity Mechanisms of Invertebrate Tonic and Phasic Neurons.
Front Physiol. 2020 Dec 16;11:611982. doi: 10.3389/fphys.2020.611982. eCollection 2020.
2
Structure/function assessment of synapses at motor nerve terminals.
Synapse. 2011 Apr;65(4):287-99. doi: 10.1002/syn.20847. Epub 2010 Sep 17.

本文引用的文献

1
The local electric changes associated with repetitive action in a non-medullated axon.
J Physiol. 1948 Mar 15;107(2):165-81. doi: 10.1113/jphysiol.1948.sp004260.
2
An analysis of the end-plate potential recorded with an intracellular electrode.
J Physiol. 1951 Nov 28;115(3):320-70. doi: 10.1113/jphysiol.1951.sp004675.
3
Integrative synaptic mechanisms in the caudal ganglion of the crayfish.
J Gen Physiol. 1960 Jan;43(3):671-81. doi: 10.1085/jgp.43.3.671.
4
Activity patterns of interneurons in the caudal ganglion of the crayfish.
J Gen Physiol. 1960 Jan;43(3):655-70. doi: 10.1085/jgp.43.3.655.
5
SOMA POTENTIALS AND MODES OF ACTIVATION OF CRAYFISH MOTONEURONS.
J Cell Comp Physiol. 1964 Oct;64:165-81. doi: 10.1002/jcp.1030640203.
6
POST-ACTIVATION CHANGES IN EXCITABILITY AND SPONTANEOUS FIRING OF CRUSTACEAN INTERNEURONS.
Comp Biochem Physiol. 1963 Feb;9:173-9. doi: 10.1016/0010-406x(63)90081-1.
7
QUANTITATIVE ASPECTS OF REPETITIVE FIRING OF MAMMALIAN MOTONEURONES, CAUSED BY INJECTED CURRENTS.
J Physiol. 1963 Oct;168(4):911-31. doi: 10.1113/jphysiol.1963.sp007230.
8
DUAL MODE OF SYNAPTIC TRANSMISSION IN THE AVIAN CILIARY GANGLION.
J Physiol. 1963 Sep;168(2):443-63. doi: 10.1113/jphysiol.1963.sp007202.
9
Impulse propagation at the septal and commissural junctions of crayfish lateral giant axons.
J Gen Physiol. 1961 Nov;45(2):267-308. doi: 10.1085/jgp.45.2.267.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验