Suppr超能文献

Replacement of lysine-181 by aspartic acid in the third transmembrane region of endothelin type B receptor reduces its affinity to endothelin peptides and sarafotoxin 6c without affecting G protein coupling.

作者信息

Zhu G, Wu L H, Mauzy C, Egloff A M, Mirzadegan T, Chung F Z

机构信息

Department of Signal Transduction, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan 48105.

出版信息

J Cell Biochem. 1992 Oct;50(2):159-64. doi: 10.1002/jcb.240500206.

Abstract

A conserved aspartic acid residue in the third transmembrane region of many of the G protein-coupled receptors has been shown to play a role in ligand binding. In the case of endothelin receptors, however, a lysine residue replaces this conserved aspartic acid residue. To access the importance of this residue in ligand binding, we have replaced it with an aspartic acid in the rat endothelin type B (ETb) receptor by PCR mediated mutagenesis. The binding characteristics and functional properties of both the wild type and mutant receptors were determined in COS-7 cells transiently expressing the cloned receptor cDNAs. Using 125I-ET-1 as the radioactive peptide ligand in displacement binding studies, the wild type receptor displayed a typical non-isopeptide-selective binding profile with similar IC50 values (0.2-0.6 nM) for all three endothelin peptides (ET-1, ET-2, and ET-3) and sarafotoxin 6c (SRTX 6c). Interestingly, the mutant receptor showed an increase in IC50 values for ET-1 (5 nM), ET-2 (27 nM), and ET-3 (127 nM) but displayed a much larger increase in IC50 value for SRTX 6c (> 10 uM). The lysine mutant receptor still elicited full inositol phosphate (IP) turnover responses in the presence of saturating concentrations of endothelins (10 nM of ET-1, 100 nM of ET-2, or 1 uM of ET-3), indicating that the mutation (K181D) did not affect the coupling of mutant receptor to the appropriate G protein. These results demonstrate that lysine-181 on the receptor is important for binding ET peptides; however, it is required for binding the ETb selective agonist-SRTX 6c.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验