Suppr超能文献

Disruption of postnatal progenitor migration and consequent abnormal pattern of glial distribution in the cerebrum following administration of methylmercury.

作者信息

Kakita Akiyoshi, Inenaga Chikanori, Sakamoto Mineshi, Takahashi Hitoshi

机构信息

Department of Pathological Neuroscience, Resource Branch for Brain Disease Research CBBR, Brain Research Institute, Niigata University, Asahimachi, Niigata, Japan.

出版信息

J Neuropathol Exp Neurol. 2003 Aug;62(8):835-47. doi: 10.1093/jnen/62.8.835.

Abstract

Transplacental administration of methylmercury (MeHg) induces disruption of neuronal migration in the developing cerebral cortex. However, the effects of MeHg on glial progenitor migration remain unclear. To understand this, we performed double administration of MeHg and 5-bromo-2-deoxyuridine (BrdU) to neonatal rat pups on postnatal day 2 (P2), when glial cells are generated from progenitors in the subventricular zone (SVZ). Histopathological examination of a proportion of the MeHg-treated rats on P28 revealed no apparent abnormalities of cytoarchitecture or neuron count in either the primary motor or primary somatosensory cortex of the cerebrum. BrdU immunohistochemistry revealed abnormal accumulation of the labeled cells in the deeper layers of the cortices and underlying white matter of both areas, where an excessive number of astrocytes (glial fibrillary acidic protein- or S-100beta-immunolabeled cells) and oligodendrocytes (2',3'-cyclic-nucleotide 3'-phosphohydrolase-labeled cells) were located. Next, to investigate the migration of individual progenitors from the forebrain SVZ of P2 neonates, we labeled them in vivo with a retrovirus encoding green fluorescent protein (GFP), following administration of MeHg, and then examined the distribution pattern of the GFP-labeled cells in the P28 cerebrum. We found that the labeled cells developed into astrocytes and oligodendrocytes and were accumulated abnormally in the lateral white matter as well as in the adjacent deeper layer of the lateral cortex and lateral side of the striatum. Thus, exposure to MeHg in the gliogenic period induced irregular distribution of glia as a consequence of abnormal migration of the postnatal progenitors.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验