Suppr超能文献

具有反常扩散的生长表面:分形 Kardar-Parisi-Zhang 方程的结果

Growing surfaces with anomalous diffusion: results for the fractal Kardar-Parisi-Zhang equation.

作者信息

Katzav Eytan

机构信息

School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Sep;68(3 Pt 1):031607. doi: 10.1103/PhysRevE.68.031607. Epub 2003 Sep 24.

Abstract

In this paper I study a model for a growing surface in the presence of anomalous diffusion, also known as the fractal Kardar-Parisi-Zhang equation (FKPZ). This equation includes a fractional Laplacian that accounts for the possibility that surface transport is caused by a hopping mechanism of a Levy flight. It is shown that for a specific choice of parameters of the FKPZ equation, the equation can be solved exactly in one dimension, so that all the critical exponents, which describe the surface that grows under FKPZ, can be derived for that case. Afterwards, the self-consistent expansion (SCE) is used to predict the critical exponents for the FKPZ model for any choice of the parameters and any spatial dimension. It is then verified that the results obtained using SCE recover the exact result in one dimension. At the end a simple picture for the behavior of the fractal KPZ equation is suggested and the upper critical dimension of this model is discussed.

摘要

在本文中,我研究了一个存在反常扩散的生长表面模型,即所谓的分形 Kardar-Parisi-Zhang 方程(FKPZ)。该方程包含一个分数阶拉普拉斯算子,它考虑了表面传输由 Levy 飞行的跳跃机制引起的可能性。结果表明,对于 FKPZ 方程参数的特定选择,该方程在一维情况下可以精确求解,从而可以得出描述在 FKPZ 下生长的表面的所有临界指数。之后,使用自洽展开(SCE)来预测 FKPZ 模型在任何参数选择和任何空间维度下的临界指数。然后验证了使用 SCE 获得的结果在一维情况下恢复了精确结果。最后,提出了分形 KPZ 方程行为的一个简单图景,并讨论了该模型的上临界维度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验