Head D A, MacKintosh F C, Levine A J
Division of Physics & Astronomy, Vrije Universiteit 1081 HV Amsterdam, The Netherlands.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Aug;68(2 Pt 2):025101. doi: 10.1103/PhysRevE.68.025101. Epub 2003 Aug 12.
We numerically investigate the rigidity percolation transition in two-dimensional flexible, random rod networks with freely rotating cross links. Near the transition, networks are dominated by bending modes and the elastic modulii vanish with an exponent f=3.0+/-0.2, in contrast with central force percolation which shares the same geometric exponents. This indicates that universality for geometric quantities does not imply universality for elastic ones. The implications of this result for actin-fiber networks is discussed.
我们对具有自由旋转交联的二维柔性随机杆状网络中的刚性渗流转变进行了数值研究。在转变附近,网络主要由弯曲模式主导,弹性模量以指数f = 3.0±0.2消失,这与具有相同几何指数的中心力渗流形成对比。这表明几何量的普适性并不意味着弹性量的普适性。讨论了该结果对肌动蛋白纤维网络的影响。