Suppr超能文献

SRrp86及其相互作用蛋白对可变剪接的调控。

Regulation of alternative splicing by SRrp86 and its interacting proteins.

作者信息

Li Jun, Hawkins Ian C, Harvey Christopher D, Jennings Jennifer L, Link Andrew J, Patton James G

机构信息

Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA.

出版信息

Mol Cell Biol. 2003 Nov;23(21):7437-47. doi: 10.1128/MCB.23.21.7437-7447.2003.

Abstract

SRrp86 is a unique member of the SR protein superfamily containing one RNA recognition motif and two serine-arginine (SR)-rich domains separated by an unusual glutamic acid-lysine (EK)-rich region. Previously, we showed that SRrp86 could regulate alternative splicing by both positively and negatively modulating the activity of other SR proteins and that the unique EK domain could inhibit both constitutive and alternative splicing. These functions were most consistent with the model in which SRrp86 functions by interacting with and thereby modulating the activity of target proteins. To identify the specific proteins that interact with SRrp86, we used a yeast two-hybrid library screen and immunoprecipitation coupled to mass spectrometry. We show that SRrp86 interacts with all of the core SR proteins, as well as a subset of other splicing regulatory proteins, including SAF-B, hnRNP G, YB-1, and p72. In contrast to previous results that showed activation of SRp20 by SRrp86, we now show that SAF-B, hnRNP G, and 9G8 all antagonize the activity of SRrp86. Overall, we conclude that not only does SRrp86 regulate SR protein activity but that it is, in turn, regulated by other splicing factors to control alternative splice site selection.

摘要

SRrp86是SR蛋白超家族中的一个独特成员,它包含一个RNA识别基序和两个富含丝氨酸-精氨酸(SR)的结构域,这两个结构域被一个不寻常的富含谷氨酸-赖氨酸(EK)的区域隔开。此前,我们发现SRrp86可以通过正向和负向调节其他SR蛋白的活性来调控可变剪接,并且独特的EK结构域可以抑制组成型剪接和可变剪接。这些功能与SRrp86通过与靶蛋白相互作用从而调节其活性的模型最为一致。为了鉴定与SRrp86相互作用的特定蛋白,我们使用了酵母双杂交文库筛选以及免疫沉淀结合质谱分析的方法。我们发现SRrp86与所有核心SR蛋白以及其他剪接调节蛋白的一个子集相互作用,包括SAF-B、hnRNP G、YB-1和p72。与之前显示SRrp86激活SRp20的结果相反,我们现在发现SAF-B、hnRNP G和9G8均拮抗SRrp86的活性。总体而言,我们得出结论,SRrp86不仅调节SR蛋白的活性,反过来,它也受到其他剪接因子的调节以控制可变剪接位点的选择。

相似文献

1
Regulation of alternative splicing by SRrp86 and its interacting proteins.
Mol Cell Biol. 2003 Nov;23(21):7437-47. doi: 10.1128/MCB.23.21.7437-7447.2003.
2
A unique glutamic acid-lysine (EK) domain acts as a splicing inhibitor.
J Biol Chem. 2002 Oct 18;277(42):39485-92. doi: 10.1074/jbc.M201784200. Epub 2002 Aug 14.
5
Splicing factor SRp30c interaction with Y-box protein-1 confers nuclear YB-1 shuttling and alternative splice site selection.
J Biol Chem. 2003 May 16;278(20):18241-8. doi: 10.1074/jbc.M212518200. Epub 2003 Feb 25.
6
Identification and characterization of a novel serine-arginine-rich splicing regulatory protein.
Mol Cell Biol. 2000 May;20(9):3049-57. doi: 10.1128/MCB.20.9.3049-3057.2000.
7
Analysis of SRrp86-regulated alternative splicing: control of c-Jun and IκBβ activity.
RNA Biol. 2010 Jul-Aug;7(4):486-94. doi: 10.4161/rna.7.4.11567. Epub 2010 Jul 1.
9
Nuclear export of messenger RNA.
Results Probl Cell Differ. 2002;35:133-50. doi: 10.1007/978-3-540-44603-3_7.
10
The CD44 alternative v9 exon contains a splicing enhancer responsive to the SR proteins 9G8, ASF/SF2, and SRp20.
J Biol Chem. 2003 Aug 29;278(35):32943-53. doi: 10.1074/jbc.M301090200. Epub 2003 Jun 24.

引用本文的文献

1
Alternative Splicing, RNA Editing, and the Current Limits of Next Generation Sequencing.
Genes (Basel). 2023 Jun 30;14(7):1386. doi: 10.3390/genes14071386.
3
Potential Links between YB-1 and Fatty Acid Synthesis in Clear Cell Renal Carcinoma.
Med Res Arch. 2020 Oct;8(10). doi: 10.18103/mra.v8i10.2273. Epub 2020 Oct 29.
4
Role of Y Box Protein-1 in cancer: As potential biomarker and novel therapeutic target.
J Cancer. 2017 Jul 3;8(10):1900-1907. doi: 10.7150/jca.17689. eCollection 2017.
5
The RNA-binding landscape of RBM10 and its role in alternative splicing regulation in models of mouse early development.
RNA Biol. 2017 Jan 2;14(1):45-57. doi: 10.1080/15476286.2016.1247148. Epub 2016 Oct 20.
6
iCLIP identifies novel roles for SAFB1 in regulating RNA processing and neuronal function.
BMC Biol. 2015 Dec 22;13:111. doi: 10.1186/s12915-015-0220-7.
7
Interactions between RNA-binding proteins and P32 homologues in trypanosomes and human cells.
Curr Genet. 2016 Feb;62(1):203-12. doi: 10.1007/s00294-015-0519-5. Epub 2015 Sep 18.
8
Unravelling the RNA-Binding Properties of SAFB Proteins in Breast Cancer Cells.
Biomed Res Int. 2015;2015:395816. doi: 10.1155/2015/395816. Epub 2015 Jul 26.
10

本文引用的文献

1
The SR protein SRp38 represses splicing in M phase cells.
Cell. 2002 Nov 1;111(3):407-17. doi: 10.1016/s0092-8674(02)01038-3.
2
Comprehensive proteomic analysis of the human spliceosome.
Nature. 2002 Sep 12;419(6903):182-5. doi: 10.1038/nature01031.
3
A unique glutamic acid-lysine (EK) domain acts as a splicing inhibitor.
J Biol Chem. 2002 Oct 18;277(42):39485-92. doi: 10.1074/jbc.M201784200. Epub 2002 Aug 14.
4
Large-scale proteomic analysis of the human spliceosome.
Genome Res. 2002 Aug;12(8):1231-45. doi: 10.1101/gr.473902.
5
Regulation of alternative splicing by the ATP-dependent DEAD-box RNA helicase p72.
Mol Cell Biol. 2002 Aug;22(16):5698-707. doi: 10.1128/MCB.22.16.5698-5707.2002.
7
Modulation of alternative pre-mRNA splicing in vivo by pinin.
Biochem Biophys Res Commun. 2002 Jun 7;294(2):448-55. doi: 10.1016/S0006-291X(02)00495-3.
10
An extensive network of coupling among gene expression machines.
Nature. 2002 Apr 4;416(6880):499-506. doi: 10.1038/416499a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验