Suppr超能文献

复活列文虎克的轮虫:重新评估二糖在隐生中的作用

Resurrecting Van Leeuwenhoek's rotifers: a reappraisal of the role of disaccharides in anhydrobiosis.

作者信息

Tunnacliffe A, Lapinski J

机构信息

Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2003 Oct 29;358(1438):1755-71. doi: 10.1098/rstb.2002.1214.

Abstract

In 1702, Van Leeuwenhoek was the first to describe the phenomenon of anhydrobiosis in a species of bdelloid rotifer, Philodina roseola. It is the purpose of this review to examine what has been learned since then about the extreme desiccation tolerance in rotifers and how this compares with our understanding of anhydrobiosis in other organisms. Remarkably, much of what is known today about the requirements for successful anhydrobiosis, and the degree of biostability conferred by the dry state, was already determined in principle by the time of Spallanzani in the late 18th century. Most modern research on anhydrobiosis has emphasized the importance of the non-reducing disaccharides trehalose and sucrose, one or other sugar being present at high concentrations during desiccation of anhydrobiotic nematodes, brine shrimp cysts, bakers' yeast, resurrection plants and plant seeds. These sugars are proposed to act as water replacement molecules, and as thermodynamic and kinetic stabilizers of biomolecules and membranes. In apparent contradiction of the prevailing models, recent experiments from our laboratory show that bdelloid rotifers undergo anhydrobiosis without producing trehalose or any analogous molecule. This has prompted us to critically re-examine the association of disaccharides with anhydrobiosis in the literature. Surprisingly, current hypotheses are based almost entirely on in vitro data: there is very limited information which is more than simply correlative in the literature on living systems. In many species, disaccharide accumulation occurs at approximately the same time as desiccation tolerance is acquired. However, several studies indicate that these sugars are not sufficient for anhydrobiosis; furthermore, there is no conclusive evidence, through mutagenesis or functional knockout experiments, for example, that sugars are necessary for anhydrobiosis. Indeed, some plant seeds and micro-organisms, like the rotifer, exhibit excellent desiccation tolerance in the absence of high intracellular sugar concentrations. Accordingly, it seems appropriate to call for a re-evaluation of our understanding of anhydrobiosis and to embark on new experimental programmes to determine the key molecular mechanisms involved.

摘要

1702年,范·列文虎克首次描述了一种蛭形轮虫——玫瑰旋轮虫(Philodina roseola)中的隐生现象。本综述的目的是考察自那时以来我们对轮虫极端耐旱性的了解,以及这与我们对其他生物隐生现象的理解有何不同。值得注意的是,如今我们所知道的关于成功隐生的要求以及干燥状态赋予的生物稳定性程度,在18世纪末斯帕兰扎尼时代原则上就已经确定了。大多数关于隐生现象的现代研究都强调了非还原性二糖海藻糖和蔗糖的重要性,在隐生性线虫、卤虫囊肿、面包酵母、复苏植物和植物种子干燥过程中,这两种糖中的一种或另一种会以高浓度存在。这些糖被认为可作为水替代分子,以及生物分子和膜的热力学和动力学稳定剂。与主流模型明显矛盾的是,我们实验室最近的实验表明,蛭形轮虫在不产生海藻糖或任何类似分子的情况下经历隐生现象。这促使我们批判性地重新审视文献中二糖与隐生现象的关联。令人惊讶的是,目前的假设几乎完全基于体外数据:关于活体系统的文献中,仅有非常有限的信息不仅仅是相关性的。在许多物种中,二糖积累大约与获得耐旱性同时发生。然而,多项研究表明这些糖对于隐生现象并不充分;此外,例如通过诱变或功能敲除实验,没有确凿证据表明糖对于隐生现象是必需的。实际上,一些植物种子和微生物,如轮虫,在细胞内无糖高浓度的情况下仍表现出优异的耐旱性。因此,似乎有必要重新评估我们对隐生现象的理解,并开展新的实验项目来确定其中涉及的关键分子机制。

相似文献

1
Resurrecting Van Leeuwenhoek's rotifers: a reappraisal of the role of disaccharides in anhydrobiosis.
Philos Trans R Soc Lond B Biol Sci. 2003 Oct 29;358(1438):1755-71. doi: 10.1098/rstb.2002.1214.
2
Anhydrobiosis without trehalose in bdelloid rotifers.
FEBS Lett. 2003 Oct 23;553(3):387-90. doi: 10.1016/s0014-5793(03)01062-7.
3
Trehalose in desiccated rotifers: a comparison between a bdelloid and a monogonont species.
Comp Biochem Physiol A Mol Integr Physiol. 2004 Dec;139(4):527-32. doi: 10.1016/j.cbpb.2004.10.019.
4
Desiccation response of mammalian cells: anhydrosignaling.
Methods Enzymol. 2007;428:269-77. doi: 10.1016/S0076-6879(07)28015-2.
5
Anhydrobiosis Affects Thermal Habituation in the Bdelloid Rotifer, Adineta sp.
Zoolog Sci. 2017 Apr;34(2):81-85. doi: 10.2108/zs160057.
7
Morphological response of a bdelloid rotifer to desiccation.
J Morphol. 2003 Aug;257(2):246-53. doi: 10.1002/jmor.10120.
8
Dry and survive: morphological changes during anhydrobiosis in a bdelloid rotifer.
J Struct Biol. 2010 Jul;171(1):11-7. doi: 10.1016/j.jsb.2010.04.003. Epub 2010 Apr 9.
9
Trehalose and anhydrobiosis in tardigrades--evidence for divergence in responses to dehydration.
FEBS J. 2008 Jan;275(2):281-8. doi: 10.1111/j.1742-4658.2007.06198.x. Epub 2007 Dec 6.
10
How does the 'ancient' asexual Philodina roseola (Rotifera: Bdelloidea) handle potential UVB-induced mutations?
J Exp Biol. 2013 Aug 15;216(Pt 16):3090-5. doi: 10.1242/jeb.087064. Epub 2013 Apr 25.

引用本文的文献

1
Biomolecular condensates-Prerequisites for anhydrobiosis?
Protein Sci. 2025 Jul;34(7):e70192. doi: 10.1002/pro.70192.
2
Effect of polystyrene nanoplastics on its toxicity and reproduction in Philodina roseola.
Sci Rep. 2025 Apr 23;15(1):14206. doi: 10.1038/s41598-025-98637-1.
5
Antioxidant Response during the Kinetics of Anhydrobiosis in Two Eutardigrade Species.
Life (Basel). 2022 May 30;12(6):817. doi: 10.3390/life12060817.
9
Stabilization of Dry Sucrose Glasses by Four LEA_4 Proteins from .
Biomolecules. 2021 Apr 21;11(5):615. doi: 10.3390/biom11050615.
10
Liquid-liquid phase separation promotes animal desiccation tolerance.
Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27676-27684. doi: 10.1073/pnas.2014463117. Epub 2020 Oct 19.

本文引用的文献

1
Desiccation-tolerant flowering plants in southern Africa.
Science. 1971 Dec 3;174(4013):1033-4. doi: 10.1126/science.174.4013.1033.
2
Maturation proteins and sugars in desiccation tolerance of developing soybean seeds.
Plant Physiol. 1992 Sep;100(1):225-30. doi: 10.1104/pp.100.1.225.
3
A role for exopolysaccharides in the protection of microorganisms from desiccation.
Appl Environ Microbiol. 1994 Feb;60(2):740-5. doi: 10.1128/aem.60.2.740-745.1994.
4
Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress.
Appl Environ Microbiol. 1991 Mar;57(3):645-8. doi: 10.1128/aem.57.3.645-648.1991.
5
THE MOLECULAR BASIS OF DEHYDRATION TOLERANCE IN PLANTS.
Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:377-403. doi: 10.1146/annurev.arplant.47.1.377.
7
THE ORIGIN OF TREHALOSE AND ITS SIGNIFICANCE DURING THE FORMATION OF ENCYSTED DORMANT EMBRYOS OF ARTEMIA SALINA.
Comp Biochem Physiol. 1965 Jan;14:135-43. doi: 10.1016/0010-406x(65)90014-9.
8
The problem of anabiosis or latent life: history and current concept.
Proc R Soc Lond B Biol Sci. 1959 Mar 17;150(939):149-91. doi: 10.1098/rspb.1959.0013.
10
Hydroxyectoine is superior to trehalose for anhydrobiotic engineering of Pseudomonas putida KT2440.
Appl Environ Microbiol. 2002 Sep;68(9):4328-33. doi: 10.1128/AEM.68.9.4328-4333.2002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验