Domingo Luis R, Andrés Juan
Instituto de Ciencia Molecular, Departamento de Química Orgánica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
J Org Chem. 2003 Oct 31;68(22):8662-8. doi: 10.1021/jo030156s.
To examine how hydrogen-bond (HB) formation involving chloroform solvent molecules influences the chemical reactivity of ketones, the hetero-Diels-Alder reaction of N,N-dimethyl-1-amino-3-methoxy-1,3-butadiene and acetone has been studied by using density functional theory (DFT) at the B3LYP/6-31G level. The effects of the chloroform on the activation energies have been modeled by means of discrete-continuum models. In the gas phase, the formation of specific HB between acetone and one and two chloroform molecules decreases the activation barriers from 19.3 to 13.6 and 8.5 kcal/mol, respectively. Inclusion of solvent effects by means of combined discrete and polarizable continuum models yields a change of molecular mechanism from a concerted to a two-step mechanism, and the first nucleophilic step is the rate-limiting step. The corresponding values of activation barriers in chloroform are 18.6 kcal/ mol (no HB), 13.5 kcal/mol (one HB), and 9.6 kcal/mol (two HBs). These theoretical results account for the experimental observation that chloroform accelerates the reaction more markedly than more polar aprotic solvent such as acetonitrile. A DFT analysis of the global electrophilicity power of the reagents provides a sound explanation about the catalytic effects of chloroform.
为了研究涉及氯仿溶剂分子的氢键(HB)形成如何影响酮的化学反应性,我们采用密度泛函理论(DFT)在B3LYP/6 - 31G水平上研究了N,N - 二甲基 - 1 - 氨基 - 3 - 甲氧基 - 1,3 - 丁二烯与丙酮的杂Diels - Alder反应。氯仿对活化能的影响已通过离散 - 连续介质模型进行模拟。在气相中,丙酮与一个和两个氯仿分子之间形成特定的氢键分别将活化能垒从19.3降低到13.6和8.5 kcal/mol。通过结合离散和可极化连续介质模型纳入溶剂效应,导致分子机制从协同机制转变为两步机制,并且第一步亲核步骤是速率限制步骤。在氯仿中相应的活化能垒值分别为18.6 kcal/mol(无氢键)、13.5 kcal/mol(一个氢键)和9.6 kcal/mol(两个氢键)。这些理论结果解释了实验观察到的氯仿比极性更强的非质子溶剂如乙腈更显著地加速反应的现象。对试剂的全局亲电能力进行的DFT分析为氯仿的催化作用提供了合理的解释。