Wakimoto Hiroko, Kasahara Hideko, Maguire Colin T, Moskowitz Ivan P G, Izumo Seigo, Berul Charles I
Department of Cardiology, Children's Hospital, Boston, Massachusetts 02115, USA.
Genesis. 2003 Nov;37(3):144-50. doi: 10.1002/gene.10236.
Nkx2.5 is a conserved homeodomain (HD) containing a transcription factor essential for early cardiac development. We generated several mutations modeling some patients with congenital heart disease. Transgenic mice (tg) expressing the wildtype Nkx2.5 under beta-myosin heavy chain (MHC) promoter died during the embryonic stage. However, tg mice expressing this mutation under beta-MHC promoter (beta-MHC-TG(I183P)), the wildtype Nkx2.5 (alpha-MHC-TG(wild)), and a putative transcriptionally active mutant (carboxyl-terminus deletion, alpha-MHC-TG(DeltaC)) under alpha-MHC promoter showed postnatal lethal heart failure. Given the profound atrioventricular conduction abnormalities we recently demonstrated in beta-MHC-TG(I183P) mice, the aim of this study was to determine whether alpha-MHC-TG(wild) and alpha-MHC-TG(DeltaC) mutant mice display similar cardiac electrophysiological phenotypes. Surface ECG recordings and in vivo electrophysiology studies were performed in alpha-MHC-TG(wild) mice and controls at 6 weeks of age, and in alpha-MHC-TG(DeltaC) mice and controls at 10 weeks of age. Ambulatory ECG recordings in alpha-MHC-TG(wild) and controls were obtained using an implantable radiofrequency telemetry system. PR prolongation and atrioventricular nodal dysfunction were detected in alpha-MHC-TG(wild) and alpha-MHC-TG(DeltaC) mice. Bradycardia and prolonged PR interval were seen in ambulatory ECG of alpha-MHC-TG(wild) mice compared to controls. Several alpha-MHC-TG(wild) mice died of bradycardia. Fetal and neonatal mutant Nkx2.5 expression causes severe cardiac conduction failure. Postnatal overexpression of nonmutant (wild) Nkx2.5 also causes conduction abnormalities, although the onset is after the neonatal stage. Bradycardia and AV conduction failure may contribute to the lethal heart failure and early mortality.
Nkx2.5是一种含有保守同源结构域(HD)的转录因子,对心脏早期发育至关重要。我们构建了一些模拟先天性心脏病患者的突变。在β-肌球蛋白重链(MHC)启动子控制下表达野生型Nkx2.5的转基因小鼠(tg)在胚胎期死亡。然而,在β-MHC启动子控制下表达此突变的tg小鼠(β-MHC-TG(I183P))、在α-MHC启动子控制下表达野生型Nkx2.5的tg小鼠(α-MHC-TG(野生型))以及在α-MHC启动子控制下表达一种假定的转录活性突变体(羧基末端缺失,α-MHC-TG(ΔC))的tg小鼠均出现出生后致死性心力衰竭。鉴于我们最近在β-MHC-TG(I183P)小鼠中证实存在严重的房室传导异常,本研究旨在确定α-MHC-TG(野生型)和α-MHC-TG(ΔC)突变小鼠是否表现出相似的心脏电生理表型。对6周龄的α-MHC-TG(野生型)小鼠和对照进行体表心电图记录及体内电生理研究,对10周龄的α-MHC-TG(ΔC)小鼠和对照进行同样的研究。使用植入式射频遥测系统对α-MHC-TG(野生型)小鼠和对照进行动态心电图记录。在α-MHC-TG(野生型)和α-MHC-TG(ΔC)小鼠中检测到PR间期延长和房室结功能障碍。与对照相比,α-MHC-TG(野生型)小鼠的动态心电图显示心动过缓和PR间期延长。几只α-MHC-TG(野生型)小鼠死于心动过缓。胎儿和新生儿期突变型Nkx2.5的表达导致严重的心脏传导衰竭。出生后非突变型(野生型)Nkx2.5的过表达也会导致传导异常,尽管发病时间在新生儿期之后。心动过缓和房室传导衰竭可能是致死性心力衰竭和早期死亡的原因。